
Function Review

Math Tutorial Lab Special Topic∗

What is a function?

A function from a set X to a set Y is a rule that assigns each element in X to precisely one element in Y.
To illustrate, examine the functions below:
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Figure 1

The mapping f in Figure 1a is a function, as it takes each element in X to one element in Y. Notice that
two elements in X can be mapped to the same element in Y, as seen by both x3 and x4 being mapped to y3.
On the other hand, the mapping g in Figure 1b is not a function, as it sends the element x3 to both y3 and
y4, two different outputs in the set Y.

We often use the vertical line test on a graph of an equation to determine if a given equation is in fact
a function or not. Several vertical lines are drawn on the graph, and we determine how many times the
vertical line crosses the graph of the equation. An equation describes y as a function of x if and only if every
vertical line intersects the graph of the equation exactly once for each x. Some examples are given in Figure 2.

Every vertical line intersects the graph of y = x2, as shown in Figure 2a, in exactly one place, so for each real
number x, there is precisely one point (x, y) = (x, x2) on the graph. This means that the graph of y = x2 is
the graph of a function.

On the other hand, there are vertical lines that intersect the graph of x = y2 twice. For example, the line
x = 4 in Figure 2b intersects the graph of x = y2 at both y = 2 and y = −2, so the graph of x = y2 is not
the graph of a function.
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Figure 2

Similarly, the dashed line x = 1
2 in Figure 2c intersects the graph of x2 + y2 = 1 at both y =

√
3
2 and

y = −
√
3
2 , so the graph of x2 + y2 = 1 is also not the graph of a function.

Functions are often denoted by letters such as f, F, g,G and so on. We refer to f(x) as the value of f at
the number x. Thus, f(x), read “f of x,” is the number that results when x is given and the rule for f is
applied. We often call f(x) the “image of x under f”. Warning: f(x) does not mean “f times x.”

Example If f(x) = 2x2 + 3, find

(a) f(2)

(b) f(2x)

(c) f(x + h)

(d) f(,)

Domain and Range

Every function has a domain and range. The domain of a function is all numbers that can be input into
the function, i.e. all elements, x, that can legally be used by the function, f . The range of a function is the
set of possible outcomes (results) after inputting the elements of the domain.

Listed below is a summary of some important items to remember about a function f :

• f(x) is the image of x or the value of f at x when the rule f is applied to an x in the domain.

• To each x in the domain of f , there is one and only one image f(x) in the range

• f is the symbol we use to denote the function. It is symbolic of a domain and a rule we use to get
from an x in the domain to f(x) in the range.

Many functions can take any input (their domain is all real numbers, or (−∞,∞)). However, a few common
functions have restrictions to their domains. For example, for any function with a square root, we have
to exclude from the domain all numbers that make the radicand of the square root negative, as we cannot
take a square root of a negative number. Another example occurs when a function contains a fraction. As
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fractions represent division, and we cannot divide by zero, we must exclude from the domain any numbers
which cause the denominator of the fraction to be zero. Some examples illustrating these concepts are given
below.
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Example Find the domain and range of f(x) = x2.

Example Find the domain and range of f(x) =
√
x. (Hint: See Figure 3)

Example Find the domain and range of f(x) = 1
x .

A function that is defined by differing expressions on various portions of its domain is called a piecewise-
defined function.

Example Sketch the graph and find the domain and range of the function defined by

f(x) =

{
x− 1, if −3 ≤ x < 0
x2, if 0 ≤ x ≤ 2.

(Hint: See Figure 4)
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Example Find the domain of f(x) = 1√
x2−4 .

Example The graph of the function f is given in the figure.

(a) Determine the values f(−1), f(0), f(1), f(3).

(b) Determine the domain and range of the function. −4 −2 2 4
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One last bit of terminology - if x is in the domain of f , we shall say that f is defined at x or that f(x) exists.
If x is not in the domain of f , we say that f is not defined at x or that f(x) does not exist. In our example
above, we would say that f is defined at 2, since 2 is in the domain of f . Alternatively, f is not defined at
−3, since −3 is not in the domain of f .

Arithmetic Combinations of Functions

We can combine two functions using our well-known arithmetic operations as follows. If f and g are functions,
then the functions f + g, f − g, f · g, and f/g are defined by

(f + g)(x) = f(x) + g(x), (f − g)(x) = f(x)− g(x),

(f · g)(x) = f(x) · g(x), (f/g)(x) = ( f
g )(x) = f(x)

g(x) .

Example If f(x) = x2 and g(x) = 3x− 2, compute f + g, f − g, f · g, and f/g.
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Both f(x) and g(x) must be defined for any of these arithmetic operations to be defined at x. This means
that the domains of f +g, f −g, and f ·g consist of those real numbers that are common to both the domain
of f and the domain of g. The domain of the quotient f/g consists of those real numbers x that are in both
the domain of f and the domain of g, and that also satisfy g(x) 6= 0.

Composition of Functions

The composition of the function f with the function g, denoted f ◦ g, is defined by (f ◦ g)(x) = f(g(x)).
The domain of f ◦ g consists of those x in the domain of g for which g(x) is in the domain of f . This is
illustrated by the diagram below:
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range of f
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f
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Figure 5

When computing (f ◦ g)(x) = f(g(x)), first x is inputted into the function g, producing the output g(x).
Then g(x) is used as the input to the function f . This gives the final value of the composition. The com-
position is defined provided x is a valid input for the function g, that is, x is in the domain of g, and, in
addition, g(x) is in the domain of f . Similarly, when computing (g ◦ f)(x) = g(f(x)), first x is inputted to
the function f , producing the output f(x). Then, we use f(x) as the input to the function g, which will give
the final value of the composition.

Example Let f(x) =
√
x− 1 and g(x) = 1

x2 .

(a) Is (f ◦ g)(0) defined?

(b) Is (f ◦ g)(2) defined?

(c) Find (f ◦ g)(x).

(d) Find (g ◦ f)(x).
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Warning: As you can see from the example above (f ◦ g)(x) 6= (g ◦ f)(x). This is typically the case when
computing compositions.

References

Most definitions, examples, and other text was taken from the fifth edition of PreCalculus by J. Douglas
Faires and James DeFranza.

Code for Figures 1 and 5 adapted from http://tex.stackexchange.com/questions/72719/how-to-draw-

function-domain-co-domain-range-diagram?rq=1.
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