Theorem: If $f(x) \leq g(x)$ near a (except possibly at a) and if $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then

$$lim_{x\to a}f(x) \le lim_{x\to a}g(x)$$

Squeeze theorem:

If
$$f(x) \leq g(x) \leq h(x)$$
 near a (except possibly at a) and if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} h(x) = L$, then $\lim_{x\to a} g(x) = L$

Example: $g(x) = x \sin \frac{1}{x}$

Defn: $\lim_{x\to a} f(x) = L$ if

x close to a (except possibly at a) implies f(x) is close to L.

Defn: $\lim_{x\to a} f(x) = L$ if

x close to a (except possibly at a) implies f(x) is close to L.

Defn: $\lim_{x\to a} f(x) = L$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Show $\lim_{x\to 1} 2 =$

Defn: $\lim_{x\to a} f(x) = L$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Show $\lim_{x\to 4} 2x + 3 =$

Defn: $\lim_{x\to a^-} f(x) = L$ if

x close to a and x < a implies f(x) is close to L.

Defn: $\lim_{x\to a^+} f(x) = L$ if

x close to a and x > a implies f(x) is close to L.

Defn: $\lim_{x\to a} f(x) = \infty$ if

x close to a (except possibly at a) implies f(x) is large.

Defn: $\lim_{x\to a} f(x) = -\infty$ if

x close to a (except possibly at a) implies f(x) is negative and |f(x)| is large.