
Exam 1 Oct. 6, 2005 SHOW ALL WORK
Math 25 Calculus I Either circle your answers or place on answer line.
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, since x → +∞, we can assume x is positive.

What if x → −∞?

= limx→+∞

√

4+ 9
x
+ 8

x
2

5+ 4
x

=
√

4
5 = 2

5

Alternate method: Factor out highest power in denominator:
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[15] 2.) Find the derivative of f(x) =
√

x by using the definition of derivative.
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Extra credit if you noticed that x must be > 0.
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Find the following derivatives

[15] 3.) d
dx

[ ex(x2−x+3)
cos(2x) ]

[ex(x2−x+3)]′cos(2x)−ex(x2−x+3)[cos(2x)]′
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= [(ex)′(x2−x+3)+ex(x2−x+3)′]cos(2x)−ex(x2−x+3)[−sin(2x)](2x)′
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= (ex)(x2+x+2)cos(2x)+2ex(x2−x+3)sin(2x)
cos2(2x)

Note it is better if you don’t show all the intermediate steps.
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Note it is better if you don’t show all the intermediate steps.
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5.) Answer the following questions based on the graph of f given below.
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[2] 5a.) domain of f = R [2] 5b.) range of f = (−∞, 5]

[1] 5c.) Is f one-to-one? No [2] 5d.) Does f−1 exist? No

[1] 5e.) f(1) = 2 [2] 5g.) f ′(−1) = 0

[2] 5f.) Solve f(x) = 1 : −4, 4

[2] 5i.) limx→+∞f(x) = 4 [2] 5j.) limx→−∞f(x) = −∞

[2] 5k.) limx→3+f(x) = −∞ [2] 5l.) limx→3−f(x) = 5

[2] 5m.) State all points where f is not continuous: x = 3(or(3, 5))

[2] 5n.) State all points where f is not differentiable: x = 3,−3, 1, (or(3, 5), (−3, 2), (1, 2))

Note there is a corner at x = −3. The transition where f is not constant for x < −3
to where f is constant between -3 and 1 is not a smooth transition. However, if you
thought it was a smooth transition due to my lack of drawing skills, you will not
be docked if you missed this point.
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[4] 6a.)  y = g(x +3)                                   
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6.)  Given the graph of y = g(x) below, draw the following graphs:

[4] 6d.)  y = g’(x)                                   

[4] 6b.)  y =                                 

[4] 6c.)  y = g   (x)                                 −1

y = g(x)

[2] 6e.) Where is g differentiable? 
Everywhere except at x = 1.


