[15] 1.) Calculate the following limit: $\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}+9 x+8}}{5 x+4}$
$\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}+9 x+8}}{5 x+4} \cdot \frac{\frac{1}{\sqrt{x^{2}}}}{\frac{1}{\sqrt{x^{2}}}}=\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}+9 x+8}}{5 x+4} \cdot \frac{\frac{1}{\sqrt{x^{2}}}}{\frac{1}{|x|}}$
$=\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}+9 x+8}}{5 x+4} \cdot \frac{\frac{1}{\sqrt{x^{2}}}}{\frac{1}{x}}$, since $x \rightarrow+\infty$, we can assume x is positive.
What if $x \rightarrow-\infty$?
$=\lim _{x \rightarrow+\infty} \frac{\sqrt{4+\frac{9}{x}+\frac{8}{x^{2}}}}{5+\frac{4}{x}}=\frac{\sqrt{4}}{5}=\frac{2}{5}$
Alternate method: Factor out highest power in denominator:
$\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}+9 x+8}}{5 x+4}=\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}\left(4+\frac{9}{x}+\frac{8}{x^{2}}\right)}}{x\left(5+\frac{4}{x}\right)}=\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}} \sqrt{4+\frac{9}{x}+\frac{8}{x^{2}}}}{x\left(5+\frac{4}{x}\right)}$
$=\lim _{x \rightarrow+\infty} \frac{|x| \sqrt{4+\frac{9}{x}+\frac{8}{x^{2}}}}{x\left(5+\frac{4}{x}\right)}=\lim _{x \rightarrow+\infty} \frac{x \sqrt{4+\frac{9}{x}+\frac{8}{x^{2}}}}{x\left(5+\frac{4}{x}\right)}$, since $x \rightarrow+\infty$, we can assume x is positive.
$=\lim _{x \rightarrow+\infty} \frac{\sqrt{4+\frac{9}{x}+\frac{8}{x^{2}}}}{5+\frac{4}{x}}=\frac{\sqrt{4}}{5}=\frac{2}{5}$
Answer 1.) $=\frac{2}{5}$
[15] 2.) Find the derivative of $f(x)=\sqrt{x}$ by using the definition of derivative.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}$
$=\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}$
$=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})}$
$=\lim _{h \rightarrow 0} \frac{1}{(\sqrt{x+h}+\sqrt{x})}=\frac{1}{(\sqrt{x}+\sqrt{x})}=\frac{1}{2 \sqrt{x}}=\frac{1}{2} x^{\frac{-1}{2}}$ IF $x>0$.
Extra credit if you noticed that x must be >0.

Answer 2.) $\underline{\frac{1}{2} x^{\frac{-1}{2}}, x>0}$

Find the following derivatives
$[15]$ 3.) $\frac{d}{d x}\left[\frac{e^{x}\left(x^{2}-x+3\right)}{\cos (2 x)}\right]$

$$
\begin{aligned}
& \frac{\left[e^{x}\left(x^{2}-x+3\right)\right]^{\prime} \cos (2 x)-e^{x}\left(x^{2}-x+3\right)[\cos (2 x)]^{\prime}}{\cos ^{2}(2 x)} \\
& =\frac{\left[\left(e^{x}\right)^{\prime}\left(x^{2}-x+3\right)+e^{x}\left(x^{2}-x+3\right)^{\prime}\right] \cos (2 x)-e^{x}\left(x^{2}-x+3\right)[-\sin (2 x)](2 x)^{\prime}}{\cos ^{2}(2 x)} \\
& =\frac{\left[\left(e^{x}\right)\left(x^{2}-x+3\right)+e^{x}(2 x-1)\right] \cos (2 x)-e^{x}\left(x^{2}-x+3\right)[-\sin (2 x)](2)}{\cos ^{2}(2 x)} \\
& =\frac{\left(e^{x}\right)\left(x^{2}+x+2\right) \cos (2 x)+2 e^{x}\left(x^{2}-x+3\right) \sin (2 x)}{\cos ^{2}(2 x)}
\end{aligned}
$$

Note it is better if you don't show all the intermediate steps.

$$
\text { Answer 3.) } \frac{\left(e^{x}\right)\left(x^{2}+x+2\right) \cos (2 x)+2 e^{x}\left(x^{2}-x+3\right) \sin (2 x)}{\cos ^{2}(2 x)}
$$

[15] 4.) $\frac{d}{d x}\left[2 \sin \left(e^{x^{3}}+4\right)\right]$

$$
\begin{aligned}
& 2\left[\sin \left(e^{x^{3}}+4\right)\right]^{\prime}=2 \cos \left(e^{x^{3}}+4\right)\left[e^{x^{3}}+4\right]^{\prime} \\
& =2\left[\cos \left(e^{x^{3}}+4\right)\right]\left[e^{x^{3}}\left(x^{3}\right)^{\prime}+0\right] \\
& =2\left[\cos \left(e^{x^{3}}+4\right)\right]\left[e^{x^{3}}\left(3 x^{2}\right)\right] \\
& =6 x^{2} e^{x^{3}} \cos \left(e^{x^{3}}+4\right)
\end{aligned}
$$

Note it is better if you don't show all the intermediate steps.

$$
\text { Answer 4.) } \quad 6 x^{2} e^{x^{3}} \cos \left(e^{x^{3}}+4\right)
$$

5.) Answer the following questions based on the graph of f given below.

[2] 5a.) domain of $f=\underline{R}$
[1] 5c.) Is f one-to-one? $\xrightarrow{N o}$
[1] 5e.) $f(1)=\underline{2}$
[2] 5f.) Solve $f(x)=1: \underline{-4,4}$
[2] 5i.) $\lim _{x \rightarrow+\infty} f(x)=\underline{4}$
[2] 5k.) $\lim _{x \rightarrow 3^{+}} f(x)=-\infty$
[2] 5b. $)$ range of $f=\underline{(-\infty, 5]}$
[2] 5d.) Does f^{-1} exist? No
[2] 5g.) $f^{\prime}(-1)=\underline{0}$
[2] 5j.) $\lim _{x \rightarrow-\infty} f(x)=\underline{-\infty}$
[2] 5l.) $\lim _{x \rightarrow 3^{-}} f(x)=\underline{5}$
[2] 5 m.$)$ State all points where f is not continuous: $\quad x=3(\operatorname{or}(3,5))$
[2] 5n.) State all points where f is not differentiable: $\quad x=3,-3,1,($ or $(3,5),(-3,2),(1,2))$
Note there is a corner at $x=-3$. The transition where f is not constant for $x<-3$ to where f is constant between -3 and 1 is not a smooth transition. However, if you thought it was a smooth transition due to my lack of drawing skills, you will not be docked if you missed this point.
6.) Given the graph of $y=g(x)$ below, draw the following graphs:

[4] 6a.) $y=g(x+3)$

[4] 6c.) $y=g^{-1}(x)$

[4] 6b.) $y=\frac{1}{g(x)}$

[4] 6d.) $y=g^{\prime}(x)$

[2] 6e.) Where is g differentiable? Everywhere except at $\mathrm{x}=1$.

