Exam 2 Nov. 10, 2005

SHOW ALL WORK

Math 25 Calculus I
Either circle your answers or place on answer line.
[16] 1.) If $f^{\prime}(x)=3 x^{4}+2+4 x^{-1}$ and $f(1)=8$, find f
$f(x)=\frac{3}{5} x^{5}+2 x+4 \ln (x)+C$ for some C.
$f(1)=8, f(1)=8=\frac{3}{5}(1)^{5}+2(1)+4 \ln (1)+C$
$8=\frac{3}{5}+2+0+C$
$6-\frac{3}{5}=\frac{30-3}{5}=\frac{27}{5}=C$
Answer 1.) $f(x)=\frac{3}{5} x^{5}+2 x+4 \ln (x)+\frac{27}{5}$
[16] 2.) $\lim _{x \rightarrow 0^{+}}\left[x^{x^{3}}\right]=\underline{1}$
$\lim _{x \rightarrow 0^{+}}\left[x^{x^{3}}\right]=\lim _{x \rightarrow 0^{+}}\left[e^{\ln \left(x^{x^{3}}\right)}\right]=\lim _{x \rightarrow 0^{+}}\left[e^{x^{3} \ln (x)}\right]$
$\lim _{x \rightarrow 0^{+}}\left[x^{3} \ln (x)\right]=\lim _{x \rightarrow 0^{+}}\left[\frac{\ln (x)}{x^{-3}}\right]=\lim _{x \rightarrow 0^{+}}\left[\frac{\frac{1}{x}}{-3 x^{-4}}\right]=\lim _{x \rightarrow 0^{+}}\left[\frac{x^{3}}{-3}\right]=0$
Hence $\lim _{x \rightarrow 0^{+}}\left[e^{x^{3} \ln (x)}\right]=e^{\lim m_{x \rightarrow 0^{+}}\left[x^{3} \ln (x)\right]}=e^{0}=1$
[10] 3a.) Given $x^{2}+2 x y+y^{3}-x-3=0$, then $y^{\prime}=\underline{\frac{1-2 x-2 y}{2 x+3 y^{2}}}$
$\frac{d}{d x}\left(x^{2}+2 x y+y^{3}-x-3\right)=\frac{d}{d x}(0)$,
$2 x+2\left(y+x y^{\prime}\right)+3 y^{2} y^{\prime}-1=0$,
$2 x+2 y+2 x y^{\prime}+3 y^{2} y^{\prime}-1=0$,
$\left(2 x+3 y^{2}\right) y^{\prime}=1-2 x-2 y$,
$y^{\prime}=\frac{1-2 x-2 y}{2 x+3 y^{2}}$,
[6] 3b.) Find the equation of the tangent line to the curve $x^{2}+2 x y+y^{3}-x-3=0$, at the point $(-2,1)$.
$y^{\prime}=\frac{1-2 x-2 y}{2 x+3 y^{2}}$,
Hence at $(-2,1), y^{\prime}=\frac{1-2(-2)-2(1)}{2(-2)+3(1)^{2}}=\frac{1+4-2}{-4+3}=-3$.
$\frac{y-1}{x-(-2)}=-3, y=-3(x+2)+1=-3 x-6+1=-3 x-5$
Answer 3b.) $y=-3 x-5$
[16] 4.) If $g(3)=4$ and $g^{\prime}(x) \leq 2$, how large can $g(8)$ be? $\underline{14}$
Since g^{\prime} exists, g is differentiable and hence continuous.
By the MVT since g continuous on $[3,8]$ and g differentiable on $(3,8)$, then there exists $c \in[3,8]$ such that

$$
\frac{g(8)-g(3)}{8-3}=g^{\prime}(c)
$$

Hence $\frac{g(8)-4}{5}=g^{\prime}(c) \leq 2$.
Thus $g(8) \leq 2(5)+4=14$.
[16] 5.) A tank is in the form of an inverted cone having a height of 16 m and a diameter at the top of 8 m . Water is flowing into the tank at the rate of $2 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water level rising when the water is 5 m deep? (Volume of cone $=\frac{1}{3} \pi r^{2} h$)
$\frac{d V}{d t}=2, \frac{d h}{d t}=$? when $h=5$.
NOTE: V, h, r change with respect to time. None of them are constant.
$V=\frac{1}{3} \pi r^{2} h, \quad \frac{r}{h}=\frac{4}{16}$. Hence $r=\frac{1}{4} h$.
$V=\frac{1}{3} \pi\left(\frac{1}{4} h\right)^{2} h=\frac{1}{3} \pi\left(\frac{h^{3}}{16}\right)$
$\frac{d}{d t}[V]=\frac{d}{d t}\left[\frac{1}{3} \pi\left(\frac{h^{3}}{16}\right)\right]$
$\frac{d V}{d t}=\frac{1}{3} \pi\left(\frac{3 h^{2}}{16} \frac{d h}{d t}\right)$
$\frac{d V}{d t}=\pi\left(\frac{h^{2}}{16} \frac{d h}{d t}\right)$
$2=\pi\left(\frac{5^{2}}{16} \frac{d h}{d t}\right)$. Hence $\frac{32}{25 \pi}=\frac{d h}{d t}$
Alternate answer:
$V=\frac{1}{3} \pi r^{2} h$. NOTE: $\mathrm{V}, \mathrm{h}, \mathrm{r}$ change with respect to time.
$\frac{d}{d t}[V]=\frac{d}{d t}\left[\frac{1}{3} \pi r^{2} h\right]$
$\frac{d V}{d t}=\frac{1}{3} \pi\left[2 r \frac{d r}{d t} h+r^{2} \frac{d h}{d t}\right]$
When $h=5: 2=\frac{1}{3} \pi\left[2 r \frac{d r}{d t}(5)+r^{2} \frac{d h}{d t}\right]$
$\frac{r}{h}=\frac{4}{16}$. Hence $r=\frac{1}{4} h$. Thus $\frac{d r}{d t}=\frac{1}{4} \frac{d h}{d t}$ and when $h=5, r=\frac{5}{4}$.
Thus, when $h=5: 2=\frac{1}{3} \pi\left[2\left(\frac{5}{4}\right)\left(\frac{1}{4}\right) \frac{d h}{d t}(5)+\left(\frac{5}{4}\right)^{2} \frac{d h}{d t}\right]=\frac{25 \pi}{16} \frac{d h}{d t}$. Hence $\frac{32}{25 \pi}=\frac{d h}{d t}$

Answer 5.) $\frac{d h}{d t}=\frac{32}{25 \pi}$
6.) Find the following for $f(x)=\frac{x}{(x-1)^{2}}$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note $f^{\prime}(x)=\frac{-x-1}{(x-1)^{3}}$ and $f^{\prime \prime}(x)=\frac{2(x+2)}{(x-1)^{4}}$
[1] 6a.) critical numbers: -1
[1.5] 6b.) local maximum(s) occur at $x=\underline{\text { none }}$
[1.5] 6c.) local minimum(s) occur at $x=\underline{-1}$
[1.5] 6d.) The global maximum of f on the interval $[0,5]$ is none and occurs at $x=\underline{\text { none }}$
[1.5] 6e.) The global minimum of f on the interval $[0,5]$ is $\underline{0}$ and occurs at $x=\underline{0}$
[1.5] 6f.) Inflection point(s) occur at $x=\underline{-2}$
[1] 6 g .) f increasing on the intervals $(-1,1)$
[1] 6h.) f decreasing on the intervals $(-\infty,-1) \cup(1, \infty)$
[1.5] 6i.) f is concave up on the intervals $(-2,1) \cup(1, \infty)$
[1.5] 6 j.$) f$ is concave down on the intervals $(-\infty,-2)$
[1.5] 6k.) Equation(s) of vertical asymptote(s) $x=1$
[4] 61.) Equation(s) of horizontal and/or slant asymptote(s) $y=0$
[4] 6m.) Graph f

