Exam 2 Nov. 8, 2006

SHOW ALL WORK

Math 25 Calculus I Either circle your answers or place on answer line.
[12] 1.) If $f^{\prime}(x)=3 x+8 x^{-1}+2 e^{x}-x^{\frac{5}{2}}-3$, find f.

Answer 1.)
[15] 2.) Given $\ln (x+y)=4 \sin (x)$, find $y^{\prime \prime}$. You do NOT need to simplify your answer and you can leave your answer in terms of x and y (and only in terms of x and y, y^{\prime} should not appear in your final answer).
[15] 3.) Given $y=x^{x}$, find y^{\prime}. Simplify your answer.

Answer 3.)
[15] 4.) $\lim _{x \rightarrow 0^{+}}\left[x^{x}\right]=$ \qquad
[15] 5.) Find the area of the largest rectangle that can be inscribed in the ellipse, $x^{2}+\frac{y^{2}}{4}=1$. How do you know that your answer is the largest possible area?
[10] 6a.) If $y=x^{\frac{4}{3}}$, find the differential $d y$ and evaluate $d y$ when $x=8$ and $d x=0.1$

6b) Find the linearization of $f(x)=x^{\frac{4}{3}}$ at $x=8$.

6c.) Use the linearization (or differential) to estimate (8.1) ${ }^{\frac{4}{3}}$
7.) Find the following for $f(x)=\frac{4}{3} x^{\frac{3}{2}}-\frac{x^{2}}{2}=x^{\frac{3}{2}}\left(\frac{8-3 x^{\frac{1}{2}}}{6}\right)$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note $f^{\prime}(x)=2 x^{\frac{1}{2}}-x=x^{\frac{1}{2}}\left(2-x^{\frac{1}{2}}\right)$ and $f^{\prime \prime}(x)=x^{\frac{-1}{2}}-1=x^{\frac{-1}{2}}\left(1-x^{\frac{1}{2}}\right)$
[1] 7a.) critical numbers: \qquad
[1.5] 7b.) local maximum(s) occur at $x=$ \qquad
[1.5] 7c.) local minimum(s) occur at $x=$ \qquad
[1.5] 7d.) The global maximum of f on the interval [0,5] is \qquad and occurs at $x=$ \qquad
[1.5] 7e.) The global minimum of f on the interval $[0,5]$ is \qquad and occurs at $x=$
[1.5] 7f.) Inflection point(s) occur at $x=$ \qquad
[1.5] 7g.) f increasing on the intervals \qquad
[1.5] 7h.) f decreasing on the intervals \qquad
[1.5] 7i.) f is concave up on the intervals \qquad
[1.5] 7j.) f is concave down on the intervals \qquad
[1] 7k.) Equation(s) of vertical asymptote(s) \qquad
[1] 7l.) Equation(s) of horizontal and/or slant asymptote(s) \qquad
[4.5] 7m.) Graph f

