College of Liberal Arts & Sciences

# GAUSS Seminar

Digital signatures are an important feature in any encryption/decryption scheme, as it provides a message with integrity, authenticity, and nonrepudiation. The problem occurs when long messages are being exchanged and signatures that are just as long need to be verified. By using hash functions, a ”fingerprint” of the message can be used instead of the message itself for verification, making the process computationally inexpensive. If we consider a single iteration of a general hashing algorithm, we see that there may be functions that allow for more efficient evaluation. This is when Rotation Symmetric Boolean Functions were studied more deeply. My research is on a matrix that comes up when studying these functions, and trying to answer a specific question about this function.

**Meeting ID: **931 9296 4149 | **Password: **GAUSS

**GAUSS will meet Tuesdays at 3:30-4:20 PM in Fall 2021.**