Math Bio Seminar

Speaker: 
Jonathan Jaquette
Topic: 
Reliability and robustness of oscillations in some slow-fast chaotic systems

Abstract:

A variety of nonlinear models of biological systems generate complex chaotic behaviors that contrast with biological homeostasis, the observation that many biological systems prove remarkably robust in the face of changing external or internal conditions. Motivated by the subtle dynamics of cell activity in a crustacean central pattern generator, we propose a refinement of the notion of chaos that reconciles homeostasis and chaos in systems with multiple timescales.

We show that systems displaying relaxation cycles going through chaotic attractors generate chaotic dynamics that are regular at macroscopic timescales, thus consistent with physiological function. We further show that this relative regularity may break down through global bifurcations of chaotic attractors such as crises, beyond which the system may generate erratic activity also at slow timescales. We analyze in detail these phenomena in the chaotic Rulkov map, a classical neuron model known to exhibit a variety of chaotic spike patterns. This leads us to propose that the passage of slow relaxation cycles through a chaotic attractor crisis is a robust, general mechanism for the transition between such dynamics, and validate this numerically in other models.

Event Date: 
February 26, 2024 - 3:30pm to 4:30pm
Location: 
105 MLH or online (See URL)
Calendar Category: 
Seminar
Seminar Category: 
Mathematical Biology