Operator Theory Seminar

Professor El Hassan Zerouali
Wandering subspace property and Wold-type decomposition for doubly commuting n-tuples of operators


Part 2. We introduce the notion of wandering subspace property,  Beurling-type theorem and   Wold-type decomposition  for  an operators  T and for   doubly commuting n-tuples    T =(T_1,..., T_n) . We show that doubly commuting  n-tuples  T  satisfies wandering subspace property if and only if  T_i  does for every  i. Applications are given in the case of Hilbert spaces of analytic functions and various recent results are extended.  New results concerning Beurling-type theorem for doubly commuting n-tuples are also presented. Finally, in the case where T_i admits a Wold-type decomposition for every i, we exhibit a Wold-type decomposition for the doubly commuting tuples   (T_1, ..., T_n).




UICapture link to recordings:


Event Date: 
April 9, 2024 - 1:30pm to 2:30pm
VAN 309 or Online (See URL)
Calendar Category: 
Seminar Category: 
Operator Theory