Ph.D. Qualifying Examination in Analysis

Professors Bor-Luh Lin and Paul S. Muhly

August 19, 2005

Instructions. Be sure to put your name on each booklet you use.

This examination is a true-false test. Each problem contains a statement that is either true or false. If you believe a statement is true, you must indicate so and give a proof. If you think it is false, you must indicate so and present a counter example.

The exam is divided into two parts. The first covers real analysis and the second covers complex analysis. Each part has 5 problems. You need only work 4 problems in each part. You must indicate which 4 you are submitting for evaluation. If you want to do five in a part, that is OK. We will treat the extra problem as a bonus.

Part I

- 1. Let f be a bounded measurable function on the interval [0,1] and let $\epsilon > 0$ be given. Then there is a step function σ on [0,1] such that $|f(x) \sigma(x)| < \epsilon$ for all $x \in [0,1]$.
- 2. If $\{f_n\}_{n\in\mathbb{N}}$ is a uniformly bounded sequence of nonnegative, Lebesgue integrable functions on \mathbb{R} such that $\{f_n\}_{n\in\mathbb{N}}$ converges to zero pointwise on \mathbb{R} , then $\int_{\mathbb{R}} f_n(x) dx \to 0$.
- 3. Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a uniformly bounded sequence of Lebesgue measurable functions defined on [0,1] and for each $n\in\mathbb{N}$ and $x\in[0,1]$, let $F_n(x)=\int_0^x f_n(t)\,dt$. Then the sequence $\{F_n\}_{n\in\mathbb{N}}$ is equicontinuous on [0,1].
- 4. The composition of two absolutely continuous functions on \mathbb{R} is absolutely continuous; i.e., if f and g are two absolutely continuous functions defined on \mathbb{R} , then $f \circ g$ is absolutely continuous.
- 5. If f is a continuous, non-decreasing function defined on [0,1] and if $E \subseteq [0,1]$ is a set of Lebesgue measure zero, then f(E) is a set of Lebesgue measure zero.

Part II

- 6. The equation sin(z) = 2 has no solutions in the complex plane.
- 7. Suppose f is analytic in a region G (in the complex plane) and that for some positive integer n, the n^{th} derivative of f achieves its maximum modulus at a point z_0 in G. Then f is a polynomial of degree at most n.
- 8. Let G be a region in the complex plane and let z_0 be a point in G. Suppose that f is a function defined and analytic on $G \setminus \{z_0\}$ and that f maps $G \setminus \{z_0\}$ into the upper half-plane. Then z_0 is a removable singularity of f.
- 9. The function $f(z) = \csc(z)$ has a simple pole at z = 0 and its residue there is 1.
- 10. Let G be the open upper half-plane and for $z \in G$ define

$$\psi_n(z):=\exp\{\frac{i-(z-n)}{i+(z-n)}\},$$

for $z \in G$ and $n \in \mathbb{N}$. Then $\{\psi_n\}_{n \in \mathbb{N}}$ is a normal family in H(G) with no non-constant limit points.