Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Professors Frauke Bleher and Muthu Krishnamurthy
August 18, 2017, 9:00 a.m. - 12:00 p.m. in 221 MLH

Instructions:

- Do EXACTLY TWO problems from EACH of the four sections.
- Please start a new page for every new problem and put your name on each sheet.
- Justify your answers and show your work.
- Please write legibly.
- In answering any part of a question, you may assume the results in previous parts of the SAME question, even if you have not solved them.
- Please turn in the exam questions with your solutions.

Notations:

We adopt standard notations. Namely:

- We write \mathbb{C}, \mathbb{R} and \mathbb{Q} to denote the field of complex numbers, real numbers and rational numbers, respectively; we write \mathbb{Z} to denote the ring of rational integers.
- Throughout this exam, R denotes a ring with identity $1 \neq 0 ; R$ is called an integral domain if it is commutative with no zero divisors.
- All R-modules are assumed to be unital left R-modules.

1 Groups

1. Let G be a group that acts transitively on a finite set A. (G is NOT assumed to be finite.) Let H be a normal subgroup of G, and let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}$ be the distinct orbits of H on A.
Prove that the action of G on A induces a well-defined action of G on $\left\{\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}\right\}$, and prove that this action is transitive. Deduce that all orbits of H on A have the same cardinality.
2. Let p be a prime number. If G is a finite group, denote the number of Sylow p subgroups of G by $n_{p}(G)$. Suppose A and B are finite groups, and that P is a Sylow p-subgroup of A and Q is a Sylow p-subgroup of B.
Prove that $P \times Q$ is a Sylow p-subgroup of $A \times B$, and that $n_{p}(A \times B)=n_{p}(A) n_{p}(B)$.
3. Let G be a group with identity element e. Suppose $n>1$ is a fixed integer such that $(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$. Define

$$
G^{(n)}=\left\{x^{n} \mid x \in G\right\} \quad \text { and } \quad G_{(n)}=\left\{x \in G \mid x^{n}=e\right\}
$$

(a) Show that $G^{(n)}$ and $G_{(n)}$ are normal subgroups of G.
(b) If G is finite, show that the order of $G^{(n)}$ equals the index of $G_{(n)}$ in G.
(c) Show that for all $x, y \in G$, we have $x^{1-n} y^{1-n}=(x y)^{1-n}$. Use this to deduce that $x^{n-1} y^{n}=y^{n} x^{n-1}$.

2 Rings

1. Let $n \geq 2$ be an integer, and let $\operatorname{Mat}_{n}(R)$ denote the ring of $n \times n$ matrices with entries in R.
Prove that every two-sided ideal of $\operatorname{Mat}_{n}(R)$ is equal to $\operatorname{Mat}_{n}(J)$ for some two-sided ideal J of R.
2. Let R be an integral domain.
(a) Prove that every prime element in R is irreducible in R. (Please include definitions of irreducible and prime elements.)
(b) If R is a Principal Ideal Domain, prove that the converse is also correct.
3. Determine which of the following ideals are prime ideals. Please justify your answers.
(a) The ideal generated by i in the ring of Gaussian integers $\mathbb{Z}[i]$.
(b) The ideal generated by y and $x^{2}+y x+1$ in $\mathbb{Z}[x, y]$.
(c) The ideal generated by $y^{2}-x^{3}-x^{2}$ in $\mathbb{C}[x, y]$.

3 Linear Algebra and Module Theory

1. Suppose

is a commutative diagram of R-modules with exact rows.
Prove: If g and k are isomorphisms, f is surjective and i is injective, then h is an isomorphism.
2. Let F be a field and let V be a vector space over F. Let $V^{*}=\operatorname{Hom}_{F}(V, F)$ be the dual vector space of V and let $V^{* *}=\left(V^{*}\right)^{*}$ be its double dual. Define a map $\tau: V \rightarrow V^{* *}$ by $\tau(v)(f)=f(v)$ for all $v \in V$ and $f \in V^{*}$.
(a) Prove that τ is an injective linear transformation.
(b) If V is finite dimensional over F, prove that τ is an isomorphism.
3. A module over a ring R is simple if it has no non-zero proper submodules and it is semi-simple if it is a direct sum of simple modules. One defines a linear operator T on a finite dimensional vector space V (over a field k) to be semi-simple if the corresponding $k[x]$-module (V, T) is semi-simple.
(a) Describe all simple $k[x]$-modules. Please justify your answer.
(b) Show that if T is diagonalizable, then it is semi-simple. Show that the converse holds if k is algebraically closed.

4 Field Theory

1. Let p be a prime number, let $f(x)=x^{p}-5 \in \mathbb{Q}[x]$, and let G be the Galois group of the splitting field of $f(x)$ over \mathbb{Q}.
Prove that G is isomorphic to the group of matrices

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbb{F}_{p}, a \neq 0\right\} .
$$

2. Let $F \subseteq K \subseteq L$ be a tower of fields.

Prove: L / F is an algebraic extension if and only if L / K and K / F are both algebraic extensions.
3. Determine the order of the Galois group of K / \mathbb{Q} where K is the splitting field of $f(x)=x^{6}-4 x^{3}+1$ over \mathbb{Q}.

