Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Professors Frauke Bleher and Miodrag Iovanov

August 17, 2018, 9:00 a.m. - 12:00 p.m. in 105 MLH

Instructions:

- Do EXACTLY TWO problems from EACH of the four sections.
- Please start a new page for every new problem and put your name on each sheet.
- Justify your answers and show your work.
- Please write legibly.
- In answering any part of a question, you may assume the results in previous parts of the SAME question, even if you have not solved them.
- Please turn in the exam questions with your solutions.

Notations:

We adopt standard notations. Namely:

- We write \mathbb{C}, \mathbb{R} and \mathbb{Q} to denote the field of complex numbers, real numbers and rational numbers, respectively. We write \mathbb{Z} to denote the ring of rational integers. If p is a prime number then \mathbb{F}_{p} denotes the finite field with p elements.
- Throughout this exam, R denotes a ring with identity $1 \neq 0 ; R$ is called an integral domain if it is commutative with no zero divisors.
- All R-modules are assumed to be unital left R-modules.

1 Groups

1. Let G be a finite group, let p be a prime number, and let P be a Sylow p-subgroup of G. Suppose N is a normal subgroup of G.
(a) Prove: $P \cap N$ is a Sylow p-subgroup of N, and $P N / N$ is a Sylow p-subgroup of G / N.
(b) Prove that the number of distinct Sylow p-subgroups of G / N is less than or equal to the number of distinct Sylow p-subgroups of G.
2. Show that any group with 255 elements is cyclic.
3. Let G be a group, N a normal subgroup of G, and let $\operatorname{Aut}(N)$ be the set of group automorphisms of N. Show that if $|G|$ and $|\operatorname{Aut}(N)|$ are two relatively prime numbers, then N is contained in the center of G.

2 Rings

1. Let R be a ring (recall that we assume that R has a multiplicative identity $1 \neq 0$). Show that if the polynomial ring $R[X]$ is a PID, then R is a field.
2. Let P be a prime ideal of the polynomial ring $\mathbb{Z}[X]$, which is not a maximal ideal.
(a) Show that $P \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}, and that, in fact, $P \cap \mathbb{Z}=0$. (Here, 0 represents the ideal consisting only of the polynomial $0 \in \mathbb{Z}[X]$.)
(b) Show that the ideal $I=P \mathbb{Q}[X]$ (i.e., the ideal generated by the elements of P inside $\mathbb{Q}[X])$ is equal to the set $\{h(X) / a \mid h(X) \in P, a \in \mathbb{Q} \backslash\{0\}\}$.
(c) Show that I is a prime ideal of $\mathbb{Q}[X]$ which can be generated by an element $f(X) \in P$, such that the content of f is 1 , and possibly using this, prove that P is a principal ideal of $\mathbb{Z}[X]$.
3. Prove that there is an isomorphism of rings

$$
\frac{\mathbb{Z}[X]}{\left\langle X^{3}-1, X^{3}+1\right\rangle} \cong \mathbb{Z} / 2 \mathbb{Z} \times \frac{\mathbb{Z}[X]}{\left\langle 2, x^{2}-x-1\right\rangle} .
$$

3 Linear Algebra and Module Theory

1. Let M be a left R-module (recall that we assume R has a multiplicative identity $1 \neq 0$ and that R-modules are unital). We say M is a simple R-module if $M \neq\{0\}$ and the only submodules of M are $\{0\}$ and M.
(a) Prove: M is simple if and only if $M \neq 0$ and $M=R m$ for all $m \in M-\{0\}$.
(b) Prove: If M is simple, then $\operatorname{End}_{R}(M)$ is a division ring (i.e., a skew field).
2. Let V be a complex vector space of dimension 7 with basis v_{1}, \ldots, v_{7}. Let $H: V \rightarrow V$ be the linear map defined as $H\left(v_{k}\right)=v_{k+1}$ for $k=1, \ldots, 6$ and $H\left(v_{7}\right)=0$. Find the Jordan canonical form of the map $T=I+H^{2}+H^{4}$, where $I: V \rightarrow V$ is the identity map.
3. Suppose $A \in M_{5}(\mathbb{Q})$ is such that $A^{9}=I$, where I is the identity matrix. Show that $A^{3}=I$.

4 Field Theory

1. Let $K=\mathbb{Q}(\sqrt[8]{7}, i)$, let $F_{1}=\mathbb{Q}(\sqrt{7})$ and let $F_{2}=\mathbb{Q}(\sqrt{-7})$.
(a) Prove that K is Galois over F_{1} and over F_{2}, and determine $\left[K: F_{1}\right]$ and $\left[K: F_{2}\right]$.
(b) Determine $\operatorname{Gal}\left(K / F_{1}\right)$ and $\operatorname{Gal}\left(K / F_{2}\right)$.
2. Let K be the splitting field of the polynomial $f(x)=x^{4}-x^{2}-1$ over \mathbb{Q}.
(a) Determine $[K: \mathbb{Q}]$, compute the Galois group of f over \mathbb{Q} and identify it up to isomorphism among known groups with a small number of elements.
(b) Determine, if any, all the intermediate extensions $\mathbb{Q} \subseteq L \subseteq K$ such that $\mathbb{Q} \subset L$ is not normal.
3. Let F be a finite field, and $F \subseteq L$ an extension of degree n.
(a) Show that any irreducible polynomial in $F[X]$ of degree n is the minimal polynomial of exactly n elements of L.
(b) If $|F|=q$, determine, in terms of q, the number of irreducible polynomials in $F[X]$ of degree 3 , and the number of irreducible polynomials in $F[X]$ of degree 9 , respectively.
