Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Professors Frauke Bleher and Miodrag Iovanov

January 11, 2019, 9:00 a.m. - 12:00 p.m. in 218 MLH

Instructions:

- Do EXACTLY TWO problems from EACH of the four sections.
- Please start a new page for every new problem and put your name on each sheet.
- Justify your answers and show your work.
- Please write legibly.
- In answering any part of a question, you may assume the results in previous parts of the SAME question, even if you have not solved them.
- Please turn in the exam questions with your solutions.

Notations:

We adopt standard notations. Namely:

- We write \mathbb{C}, \mathbb{R} and \mathbb{Q} to denote the field of complex numbers, real numbers and rational numbers, respectively. We write \mathbb{Z} to denote the ring of rational integers. If p is a prime number then \mathbb{F}_{p} denotes the finite field with p elements.
- Throughout this exam, R denotes a ring with identity $1 \neq 0 ; R$ is called an integral domain if it is commutative with no zero divisors.
- All R-modules are assumed to be unital left R-modules.

1 Groups

1. Prove that every group of order $616=2^{3} \cdot 7 \cdot 11$ is not simple.
2. Let G be a group and let $H \leq G$. Let $\mathcal{C}=\{g H \mid g \in G\}$ be the set of distinct left cosets of H in G.

Prove that G acts on \mathcal{C} by left multiplication (i.e. prove this is a group action), show that this action is transitive and that the kernel of this action is equal to $\bigcap_{g \in G} g H g^{-1}$.
3. Let G be a simple group with 360 elements, and let H be a proper subgroup. Let $\mathcal{C}_{\ell}=\{g H \mid g \in G\}$ be the set of left cosets of H in G, and let $\mathcal{C}_{r}=\{H g \mid g \in G\}$ be the set of right cosets of H in G. Suppose $\mathcal{C}_{\ell}=\mathcal{C}_{r}$ as subsets of $\mathcal{P}(G)$. Find the order of H.

2 Rings

1. Let R and S be commutative rings, and let $\varphi: R \rightarrow S$ be a surjective ring homomorphism. Let P be an ideal of R with $\operatorname{Ker}(\varphi) \subseteq P$.
Prove that P is a prime ideal of R if and only if $\varphi(P)$ is a prime ideal of S.
2. Let F be a field. Prove that the set R of polynomials $f(x) \in F[x]$ whose coefficient of x is equal to 0 is a subring of $F[x]$ and that R is not a UFD.
3. Let R be a ring generated by invertible elements, equivalently, each element of R can be written as a finite sum of invertible elements.
Show that 1 can be written as a sum of an even number of invertible elements $1=u_{1}+\ldots+u_{2 n}$ if and only if there is no surjective ring homomorphism $f: R \rightarrow \mathbb{F}_{2}$.

3 Linear Algebra and Module Theory

1. Let R be an integral domain, and let M be an R-module. Recall that the rank of M is the maximum number of R-linearly independent elements in M.
Prove: If M has a submodule N that is a free R-module of rank n and M / N is a torsion R-module, then M has rank n.
2. Consider the matrix $A=\left(\begin{array}{rrrr}2 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$.

Find the rational canonical form of A over \mathbb{Q}, and find the Jordan canonical form of A over \mathbb{C}.
3. Let p be a prime number, and let $A=\left(a_{i j}\right)_{1 \leq i, j \leq p} \in M_{p}\left(\mathbb{F}_{p}\right)$ be the $p \times p$ matrix with $a_{i i+1}=1$ for $i=1, \ldots, p-1$ and $a_{p, 1}=1$, and $a_{i j}=0$ for all other values of the pair (i, j). Find the Jordan canonical form of A over \mathbb{F}_{p}.

4 Field Theory

1. Let F be a field, and let $\sigma: F \rightarrow L$ be an embedding of F into an algebraically closed field L. Suppose α is algebraic over F.
Prove that there exists an embedding $\tau: F(\alpha) \rightarrow L$ extending σ. Moreover, prove that the number of distinct embeddings $F(\alpha) \rightarrow L$ extending σ is equal to the number of distinct roots (in some algebraic closure of F) of the minimal polynomial $m_{\alpha, F}(x)$ of α over F.
2. Find the splitting field K of $f(x)=x^{4}+10 x^{2}+5$ over \mathbb{Q}. Determine a set of generators for the Galois group $G=\operatorname{Gal}(K / \mathbb{Q})$ and describe how each of these generators permutes the roots of $f(x)$. Determine the isomorphism type of G.
3. Let $K \subset L$ be a finite field extension such that $K \neq L$. Suppose that for every $d \mid[L: K]$, there is a unique subextension $K \subseteq F \subseteq L$ such that $[F: K]=d$.
(i) Give an example of such an extension that is Galois, and an example of such an extension that is not Galois.
(ii) Suppose the extension above is Galois. Show that $\operatorname{Gal}(L / K)$ is abelian.
