Qualifying Exam -Analysis
 Winter 2017

Professors Ionut Chifan and Paul Muhly

Rules of the exam

- You have 180 minutes to complete this exam.
- The exam contains a section of 5 problems in real analysis and a section of 5 problems in complex analysis. For maximum points you must submit solutions for 7 problems. Also you must attempt at least 2 problems in each section.
- Please mark the problems to be graded on the first column of the grading table on page 2 .
- Show your work! - any answer without an explanation will get you zero points.
- Please read the questions carefully; some ask for more than one thing.
- Do not forget to write your name, see page 2 .
- You are not allowed to use a cell phone or a calculator during the exam.

Real Analysis

R-I: Solve at your choice ONE of the following problems:
a) Let E be a measurable set such that $0<\mu(E)<\infty$. Show that the set $E-E=\{x-y: x, y \in E\}$ contains an nonempty open interval.
b) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable then the set $\left\{x \in \mathbb{R}: \mu\left(f^{-1}(x)\right)>0\right\}$ has measure zero.
\mathbf{R} - II: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesque integrable on the real line. Show that

$$
\lim _{h \rightarrow 0} \int_{\mathbb{R}}|f(x+h)-f(x)| d \mu(x)=0 .
$$

R-III: Let (X, d) be a compact metric space and let $f: X \rightarrow X$ be a function such that $d(f(x), f(y))<$ $d(x, y)$ for all $x, y \in X$ with $x \neq y$. Show that f has a unique fixed point.

R-IV: Let $f:[0,1] \rightarrow \mathbb{R}_{+}$be an integrable function and let $F_{n} \subseteq[0,1]$ be a sequence of measurable sets such that $\int_{F_{n}} f d \mu \rightarrow 0$, as $n \rightarrow \infty$. Show that $\mu\left(F_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$.

R-V: Let $F_{k} \subset[0,1], k \in \mathbb{N}$ be measurable sets, and there exists $\delta>0$ such that $m\left(F_{k}\right) \geq \delta$ for all k. Assume the sequence $a_{k} \geq 0$ satisfies

$$
\sum_{k=1}^{\infty} a_{k} \chi_{F_{k}}(x)<\infty \text { for a.e. } x \in[0,1]
$$

Show that

$$
\sum_{k=1}^{\infty} a_{k}<\infty
$$

Make sure you include all the details in your arguments.

Complex analysis

C-I: Define $D=\{z \in \mathbb{C}:|z|<1\}, D_{+}=\left\{z \in \mathbb{C}:|z-i|^{2}<2\right\}, D_{-}=\left\{z \in \mathbb{C}:|z+i|^{2}<2\right\}$, and let $\Omega=D_{+} \cap D_{-}$. Construct a bi-holomophic map from Ω to D.

C - II: Let $f \in \mathbb{C}[z]$ be a polynomial of degree n. Let $\alpha_{1}, \ldots, \alpha_{n}$ be roots of $f(z)$ and let $\beta_{1}, \ldots, \beta_{n-1}$ be roots of $f^{\prime}(z)$.

1. If for all $i \in\{1, \ldots, n\}$ we have $\operatorname{Re}\left(\alpha_{i}\right)>0$ then prove that $\operatorname{Re}\left(\beta_{j}\right)>0$ for all $j \in\{1, \ldots, n-1\}$;
2. If for all $i \in\{1, \ldots, n\}$ and $\left|\alpha_{i}\right|<1$ then prove that $\left|\beta_{j}\right|<1$ for all $j \in\{1, \ldots, n-1\}$.

C - III: Let $f(z)$ be a non-constant analytic function on $D_{2}=\{z \in \mathbb{C}:|z|<2\}$. If $|f(z)| \equiv 1$ for all z such that $|z|=1$, then prove that f has at least one zero in $D=\{z \in \mathbb{C}:|z|<1\}$.

C-IV: Compute the following integral

$$
\int_{-\infty}^{+\infty}\left(\frac{\sin x}{x}\right)^{3} d x
$$

$\mathbf{C}-\mathbf{V}$: Show that all the roots of the equation $e^{z}=3 z^{2}$ in $D=\{z \in \mathbb{C}:|z|<1\}$ are real.

