Qualifying Exam —Analysis
 Winter 2018

Professors Ionut Chifan and Paul Muhly

Rules of the exam

- You have 180 minutes to complete this exam.
- The exam contains a section of 4 problems in real analysis and a section of 4 problems in complex analysis. For maximum points you must submit solutions for 6 problems. Also you must attempt at least 2 problems in each section.
- Please mark the problems to be graded on the first column of the grading table on page 2.
- Show your work! - any answer without an explanation will get you zero points.
- Please read the questions carefully; some ask for more than one thing.
- Do not forget to write your name, see page 2 .
- You are not allowed to use a cell phone or a calculator during the exam.

Real Analysis

R-I: Solve at your choice ONE of the following problems:
a) Let $E \subseteq \mathbb{R}$ be a Lebesgue measurable set such that $3 \mu(E \cap(a, b)) \leq b-a$ for all $a<b$. Find $\mu(E)$. Make sure you include all the details in your arguments.
b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function. Show that f has at most countably many discontinuity points. Conversely, if $A \subset \mathbb{R}$ is a countable subset then there exists a increasing function f whose discontinuity points coincide with A. Make sure you include all the details in your arguments.

R-II: Let $p \geq 1$. Assume that f is an absolute continuous function on any compact interval and moreover $f^{\prime} \in L^{p}(\mathbb{R}, \mu)$. Show that

$$
\sum_{n \in \mathbb{Z}}|f(n+1)-f(n)|^{p}<\infty .
$$

R-III: Let (X, d) be a compact metric space and let $f: X \rightarrow X$ be an isometry (i.e. $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$). Show that f is a homeomorphism (i.e. it is continuous, invertible, and the inverse is continuous as well).
\mathbf{R} - IV: Let $f_{n} \in L^{3}((0,1))$ nonnegative functions such that $\left\|f_{n}\right\|_{3}=1$ for all n and $f_{n} \rightarrow 0$ almost everywhere as $n \rightarrow \infty$. Show that $\int_{0}^{1} f_{n} d \mu \rightarrow 0$ as $n \rightarrow \infty$.

Complex analysis

C-I: Solve at your choice ONE of the following problems:
a) Compute the following integral

$$
\int_{0}^{\infty} \frac{d x}{1+x^{7}}
$$

b) Construct a conformal map from the unit disk onto the infinite horizontal strip $|\operatorname{Im}(z)|<1$. Make sure you include all the details in your arguments.
c) TRUE-FALSE: Let f be analytic on the open punctured unit disk $\mathbb{D} \backslash\{0\}$. Can f^{\prime} have a polar singularity of order one at 0 ? Make sure you include all the details in your arguments.

C-II: Suppose $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is a nonconstant, real-valued harmonic function on the punctured plane. Prove that the image of f is all of \mathbb{R}.

C-III: Suppose f is a holomorphic function on $\{z \in \mathbb{C}||z|<1\}$, the open unit disk, with the property that $\operatorname{Re} f(z)>0$ for every point z in the disk. Prove that $\left|f^{\prime}(0)\right| \leq 2 \operatorname{Re} f(0)$.

C - IV: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an injective holomorphic function. Show there exists $a, b \in \mathbb{C}$ such that $f(z)=a z+b$.

