Qualifying Exam -Analysis

Summer 2017

Rules of the exam

- You have 180 minutes to complete this exam.
- The exam contains a section of 4 problems in real analysis and a section of 4 problems in complex analysis. For maximum points you must submit solutions for 6 problems. Also you must attempt at least 2 problems in each section.
- Please mark the problems to be graded on the first column of the grading table on page 2.
- Show your work! - any answer without an explanation will get you zero points.
- Please read the questions carefully; some ask for more than one thing.
- Do not forget to write your name, see page 2 .
- You are not allowed to use a cell phone or a calculator during the exam.

Good luck!

Real Analysis

R-I: Solve at your choice ONE of the following problems:
a) Let E be the subset of all elements in $[0,1]$ which do not contain the digits 3 and 9 in their decimal expansion. Is E Lebesgue measurable? If yes find its measure.
b) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable then the set $\left\{x \in \mathbb{R}: \mu\left(f^{-1}(x)\right)>0\right\}$ has measure zero.
\mathbf{R} - II: Let $f_{n}:[-1,1] \rightarrow \mathbb{R}$ be a sequence of Lebesque measurable functions that converges to f almost everywhere. If $\int_{[-1,1]}\left|f_{n}\right|^{4} d \mu \leq 1$ for every n then show that $\int_{[-1,1]}\left|f_{n}-f\right| d \mu$ converges to 0 .

R - III: Let (X, d) be a compact metric space and let $f: X \rightarrow X$ be a continuous function. Show that there exists $A \subseteq X$ a compact subset such that $f(A)=A$.

R - IV: Let $F_{k} \subset[0,1], k \in \mathbb{N}$ be measurable sets, and there exists $\delta>0$ such that $m\left(F_{k}\right) \geq \delta$ for all k. Assume the sequence $a_{k} \geq 0$ satisfies

$$
\sum_{k=1}^{\infty} a_{k} \chi_{F_{k}}(x)<\infty \text { for a.e. } x \in[0,1]
$$

Show that

$$
\sum_{k=1}^{\infty} a_{k}<\infty
$$

Make sure you include all the details in your arguments.

Complex analysis

C-I: Solve at your choice ONE of the following problems:
a) Compute the following integral

$$
\int_{-\infty}^{+\infty}\left(\frac{\sin x}{x}\right)^{3} d x
$$

b) Let \mathcal{P} be the open region determined by the pentagon with vertices at ω^{k} where $k=\overline{0,4}$ and $\omega=\cos (2 \pi / 5)+i \sin (2 \pi / 5)$. Let $f: \overline{\mathcal{P}} \rightarrow \mathbb{C}$ be a continuous function that is analytic on \mathcal{P}. Assume that for every $t \in(0,1)$ we have that $\lim _{z \rightarrow \frac{2-t+t \omega}{2}} f(z)=\lim _{z \rightarrow \frac{2-t \omega^{2}+t \omega^{3}}{2}} f(z)=0$. Find f.

C - II: If we denote by $\mathcal{H}=\{z \in \mathbb{C}:|z-i|>1\}$ then describe all analytic, bijective maps $f: \mathcal{H} \rightarrow \mathcal{H}$.

C - III: Let f be a non-constant, analytic function on the unit disk \mathbb{D}. If there exists a power series expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq\left|a_{1}\right|$ then show that f is injective.

C - IV: Let f be an analytic function on the open unit disk \mathbb{D}. Assume that for every $z \in(-1,0]$ the power series expansion around z has a vanishing coefficient. Show that f is a a polynomial function.

