Qualifying Exam -Analysis
 Summer 2020

Professors Ionut Chifan and Lihe Wang

Rules of the exam

- You have 180 minutes to complete this exam.
- The exam contains a section of 5 problems in real analysis and a section of 5 problems in complex analysis. For maximum points you must submit solutions for 7 problems, at least 3 from each section.
- Please mark the problems to be graded on the first column of the grading table on page 2 .
- Show your work! - any answer without an explanation will get you zero points.
- Please read the questions carefully; some ask for more than one thing.
- Do not forget to write your name, see page 2 .
- You are not allowed to use a calculator, cell phone, ipad or any other internet browser device during the exam.

Good luck!

NAME (PRINT): \qquad

Mark in the first column below which problems should be graded!

Your Choice	Problem	Points	Your Score
	R - I	25	
	R - II	25	
	R - III	25	
	R - IV	25	
	R - V	25	
	C - I	25	
	C - II	25	
	C - III	25	
	C - IV	25	
	C - V	25	
	Total	175	

Real Analysis

$\mathbf{R}-\mathbf{I}$: Solve at your choice ONE of the following problems:
a) Suppose for all any $x \in(0,1)$ and $\varepsilon>0$ there exists $0<r<\varepsilon$, such that $\int_{x-r}^{x+r} f(x) d x \geq 2 r$. Show that $f \geq 1$ a.e for $x \in[0,1]$.
b) Is there a closed, uncountable subset of \mathbb{R} containing no rational numbers? Justify your answer!
c) (True-False) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function and denote by $A=\left\{x \in \mathbb{R}: m\left(f^{-1}(\{x\})\right)>0\right\}$. Then $m(A)=0$. If you believe is true provide a proof otherwise supply a counterexample.

R - II: (True-False) If f is integrable on \mathbb{R} then $\lim _{x \rightarrow \infty} f(x)=0$. If you believe it is true provide a proof, otherwise supply a counterexample.

R - III: Suppose E is a measurable set such that $m(E \cap(a, b)) \geq \frac{b-a}{2}$ for all $a<b$. Show that E is the whole axis except a measure zero set.

R-IV: Let A be a measurable subset of $[0,2]$ and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by letting $f(x)=m((-\infty, x] \cap A)$, for every $x \in \mathbb{R}$; here m is the Lebesgue measure on \mathbb{R}.
1.) Show that f is absolutely continuous on \mathbb{R}, calculate f^{\prime} and $\int_{0}^{3} f^{\prime}(x) d m(x)$, explaining your reasoning.
2.) Show that for every $0<b<m(A)$ there exists $x_{0} \in \mathbb{R}$ such that $b=m\left(\left(-\infty, x_{0}\right] \cap A\right)$.

Make sure you state correctly all the results you use in the proof.
R-V: Let $1 \leq p<\infty$ and suppose that $f, f_{k} \in L^{p}(\mathbb{R})$ are functions satisfying $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$, for almost every $x \in \mathbb{R}$. Then prove that $\lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{L^{p}}=0$ if and only if $\lim _{k \rightarrow \infty}\left\|f_{k}\right\|_{L^{p}}=\|f\|_{L^{p}}$.

Complex analysis

C-I: Solve at your choice ONE of the following problems:
a) If $0<a<1$ then show that

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin (a \pi)}
$$

b) (True-False) Let f be analytic on the open punctured unit disk $D(0,1) \backslash\{0\}$. Can f^{\prime} have a polar singularity of order one at 0 ? If you believe it is true provide a proof, if not supply a counterexample. Also make sure you include all the details in your arguments.
c) Assume that $\left(a_{n}\right)=(1,1,2,3,5,8, \ldots)$ is Fibonacci sequence. Consider the power series $f(z)=$ $\sum_{n} a_{n} z^{n}$. Find the radius of convergence for $f(z)$ and determine a singularity point of the circle of convergence in case it is finite.

C - II: Find all entire functions f of finite order such that f has 2020 roots and f^{\prime} has 2022 roots, counted with their multiplicities. State clearly all the theorems you are using.

C- III: Assume that f is an entire function such that $|f(z)|=1$ when $|z|=1$. Prove that $f(z)=a z^{n}$ for some integer $n \geq 0$ and some $a \in \mathbb{C}$ with $|a|=1$.

C-IV: Let \mathcal{F} be the class of all $f \in H(D(0,1))$ such that $\operatorname{Ref}>0$ and $f(0)=1$. Show \mathcal{F} is a normal family.

C - V: Suppose that $f: D(0,1) \rightarrow P$ is a conformal mapping onto a regular pentagonal region P, with center at 0 such that $f(0)=0$. Compute $f^{(2020)}(0)$.
(Here we denoted by $f^{(n)}$ the n-th derivative of f.)

R - I:Solve at your choice ONE of the following problems:
a) Suppose for all any $x \in(0,1)$ and $\varepsilon>0$ there exists $0<r<\varepsilon$, such that $\int_{x-r}^{x+r} f(x) d x \geq 2 r$. Show that $f \geq 1$ a.e for $x \in[0,1]$.
b) Is there a closed, uncountable subset of \mathbb{R} containing no rational numbers? Justify your answer!
c) (True-False) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function and denote by $A=\left\{x \in \mathbb{R}: m\left(f^{-1}(\{x\})\right)>0\right\}$. Then $m(A)=0$. If you believe is true provide a proof, otherwise supply a counterexample.

Make sure you state correctly all the results you use in the proof.

Solution:

PROBLEM: R-II:(True-False) If f is integrable on \mathbb{R} then $\lim _{x \rightarrow \infty} f(x)=0$. If you believe it is true provide a proof, otherwise supply a counterexample.
Make sure you state correctly all the results you use in the proof.

Solution:

PROBLEM: R-III: Suppose E is a measurable set such that $m(E \cap(a, b)) \geq \frac{b-a}{2}$ for all $a<b$. Show that E is the whole axis except a measure zero set.
Make sure you state correctly all the results you use in the proof.

Solution:

PROBLEM: R-IV: Let A be a measurable subset of $[0,2]$ and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by letting $f(x)=$ $m((-\infty, x] \cap A)$, for every $x \in \mathbb{R}$; here m is the Lebesgue measure on \mathbb{R}.
1.) Show that f is absolutely continuous on \mathbb{R}, calculate f^{\prime} and $\int_{0}^{3} f^{\prime}(x) d m(x)$, explaining your reasoning.
2.) Show that for every $0<b<m(A)$ there exists $x_{0} \in \mathbb{R}$ such that $b=m\left(\left(-\infty, x_{0}\right] \cap A\right)$.

Make sure you state correctly all the theorems you use in the proof.
Solution:

PROBLEM: R-V: Let $1 \leq p<\infty$ and suppose that $f, f_{k} \in L^{p}(\mathbb{R})$ are functions satisfying $\lim _{k \rightarrow \infty} f_{k}(x)=$ $f(x)$, for almost every $x \in \mathbb{R}$. Then prove that $\lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{L^{p}}=0$ if and only if $\lim _{k \rightarrow \infty}\left\|f_{k}\right\|_{L^{p}}=\|f\|_{L^{p}}$. Make sure you state correctly all the theorems you use in the proof.

Solution:

PROBLEM: C-I: Solve at your choice ONE of the following problems:
a) If $0<a<1$ then show that

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin (a \pi)}
$$

b) (True-False) Let f be analytic on the open punctured unit disk $D(0,1) \backslash\{0\}$. Can f^{\prime} have a polar singularity of order one at 0 ? If you believe it is true provide a proof, if not supply a counterexample. Also make sure you include all the details in your arguments.
c) Assume that $\left(a_{n}\right)=(1,1,2,3,5,8, \ldots)$ is Fibonacci sequence. Consider the power series $f(z)=$ $\sum_{n} a_{n} z^{n}$. Find the radius of convergence for $f(z)$ and determine a singularity point of the circle of convergence in case it is finite.

Make sure you state correctly all the results you use in the proof.

Solution:

PROBLEM: C - II. Find all entire functions f of finite order such that f has 2020 roots and f^{\prime} has 2022 roots, counted with their multiplicities. State clearly all the theorems you are using. Make sure you state correctly all the results you use in the proof.

Solution:

PROBLEM: C - III. Assume that f is an entire function such that $|f(z)|=1$ when $|z|=1$. Prove that $f(z)=a z^{n}$ for some integer $n \geq 0$ and some $a \in \mathbb{C}$ with $|a|=1$.
Make sure you state correctly all the results you use in the proof.

Solution:

PROBLEM: C - IV. Let \mathcal{F} be the class of all $f \in H(D(0,1))$ such that $\operatorname{Re} f>0$ and $f(0)=1$. Show \mathcal{F} is a normal family.
Make sure you state correctly all the results you use in the proof.

Solution:

PROBLEM: C - V. Suppose that $f: D(0,1) \rightarrow P$ is a conformal mapping onto a regular pentagonal region P, with center at 0 such that $f(0)=0$. Compute $f^{(2020)}(0)$.
(Here we denoted by $f^{(n)}$ the n-th derivative of f.)
Make sure you state correctly all the results you use in the proof.

Solution:

