PokéMath: The Mathematics of Pokémon Go®
Math:1260
Spring 2023
The University of Iowa
Department of Mathematics
Further information may be found on the ICON page for this course https://icon.uiowa.edu
Some of the policies relating to this course (such as the drop deadline) are governed by its administrative home, the College of Liberal Arts and Sciences, 120 Schaeffer Hall.

Note: Copyright and Trademark rights for Pokémon® and Pokémon Go® are owned by Nintendo of America Inc.

Instructor: Kitrick Fynaardt
Office: B12 MLH
Walk-in hours: Thursday: 12:00pm – 2:00pm. Students are invited to drop by during these hours to discuss questions about the course material or concerns. I am also available by appointment if you are unable to attend my walk-in hours.

E-mail: kfynaardt@uiowa.edu
DEO: Dr. Ryan Kinser, ryan-kinser@uiowa.edu, 14A MLH, 319-335-0786

Prerequisites: None
Time and location: Lectures 1:30-2:20 PM Mondays and Wednesdays in 112 MH.
Discussion sections: Thursdays: 11:00-11:50 AM in 214 MLH.

Have you ever wondered what makes Tyranitar so good for raids? Or what the appraisal of IVs means? Or if a razzberry really makes that Pokémon® easier to catch? In this course we will dig into these questions and more! Along the way, you will be exposed to the core practice of applied mathematics: identifying questions, developing mathematical models, and analyzing those models. We will learn how to use ideas from algebra, statistics, and precalculus to take your Pokémon Go® play to the next level.

The course is organized in three modules, “I choose you” where we learn about Pokémon® types, attributes and stats, “gotta catch ‘em all”® where we will learn about catching Pokémon® and modifiers such as berries, balls and throws, and “to be the very best” where we will learn about player vs player battles, damage and defense. Each module includes an introduction to related mathematical ideas, homework and in-class group work to practice key techniques, and a capstone project where you will use examples and data from your own game play.

Course Description:
This course is built around three core themes:

Mathematics is a language: It is fundamentally a way to communicate complex ideas. We will focus on learning to use the language of mathematics to make convincing arguments. Students
will learn to choose clear and concise notations, to write for a technical audience, and to incorporate mathematics into their discussions about complex questions.

Mathematics is the art of problem solving: It is more than a collection of tools we use to solve homework problems. Students will learn fundamental mathematical techniques in algebra, statistics and mathematical modeling and will learn to use these techniques to deepen their understanding of problems arising in the game.

Mathematics is everywhere. Yes, even in Pokémon Go®. Students will be encouraged to see mathematics all around them and explore the ways in which mathematical ideas impact their experiences.

Learning Outcomes: Students will be exposed to the core practice of applied mathematics: identifying questions, developing mathematical models, and analyzing those models. The first module focuses on sets and functions and includes set notation, Venn diagrams, unions and intersections, functions, representations of functions in tables and formulas, piecewise functions and invertible functions. The second module focuses on probability and statistics, including data collection and management, probability, conditional probability, discrete random variables, uniform distributions, independence, other distributions, and an introduction to basic statistics such as mean, median, mode and variance. The third module focuses on rates of change and game theory, including calculations of average rate of change and total change.

Top Hat: We will be using Top Hat Pro (www.tophat.com) for class participation. You will be able to submit answers to in-class questions using smartphones and tablets, computers, laptops, or through text message. For instructions on how to create a Top Hat account and enroll in our Top Hat Pro course, please refer to the invitation sent to your school email address or consult Top Hat’s Getting Started Guide (https://bit.ly/31TGMlw). If you already have an account, you can also find the course using join code: 141111

Textbook: *Mathematics with Applications in the Management, Natural and Social Sciences*. Lial, Hungerford, Holcomb, and Mullins. 12th Edition. We will cover material from chapters 3, 4, 8, 9, 10, and 11. Your ebook is available through ICON Direct. This means the cost will be billed directly to your UBill (unless you opt out). To access the ebook use the Unizin Engage link on ICON or the Unizin App.

Online Resources: Additional readings will be from online resources including

- https://gamepress.gg/pokemongo
- https://pokemongohub.net
- https://thesilphroad.com/science/
- https://bulbapedia.bulbagarden.net/wiki/Main_Page
- https://www.serebii.net/index2.shtml

Additional Resources:
The [Math Tutorial Lab in 125 MacLean Hall](http://www.math.uiowa.edu/math-tutorial-lab) offers free, drop-in tutoring for students enrolled in this class. Schedule and information about the Math Tutorial Lab is available at http://www.math.uiowa.edu/math-tutorial-lab.
There are a variety of other places on campus where you can go for help with this course. Visit http://tutor.uiowa.edu for more information.

Structure: We will have two lectures and one discussion section each week. The semester is divided into three modules, each five weeks in length. Each module will be worth a total of 200 points spread across three homework assignments, four in class group work assignments, ten in class clicker questions, and a final project. The homework assignments will be due in weeks 1, 2, and 3 of the module. Each homework will be worth a total of 20 points and include a computational and an expository portion. The group work assignments, done in discussion, are each worth 15 points. The in class “clicker” questions using Top Hat are worth 2 points per lecture. And each module will culminate in a project worth a total of 60 points, subdivided among three assignments: proposal, data collection, and analysis. In week 3 students will submit a proposal, including their hypothesis and experimental design. In week 4 students will submit a summary of their data, including any changes in the experimental design. This stage focuses on data collection and data management using the software excel. In week 5, students will submit their full project with mathematical analysis.

Homework: Each assignment has problems asking you to make calculations using the mathematical ideas and notation introduced. Each also has a writing question where you will give an explanation using mathematical themes and notations from that week.

Group work: Each week in discussion, you will work in small groups on problems related to the recent lecture content. These are designed to give you further opportunities to practice key problem-solving skills and to gain experience in explaining your calculations to classmates.

Top Hat: During lecture, you will have a chance to put your new knowledge to work immediately. For Top Hat questions, you will earn points for participation and for a correct answer.

Projects: See outlines below for the projects which provide the capstone for each module. The first stage of the project will be worth 10 points and will be graded for clarity and for the degree to which the proposed project makes use of the mathematical topics from that module. Because we want you to be creative while still ensuring that your proposals are feasible and use the techniques you are learning, the initial proposal may be revised. You will have the opportunity to resubmit your proposal with the second stage and recoup any points lost up to the total of five. The second stage will be worth 20 points and will be graded for complete and organized data collection. The third stage is the final project report. It will be worth 30 points. The reports will be graded on each section: Introduction (6 points), Methods (6 points), Results (10 points), and Discussion (8 points). The later sections must include the application of the mathematical ideas and techniques from that module to address the hypothesis.

Grading: 600 total points are possible for the semester. Grades will be assigned with a standard scale. That is 90-100% or 540-600 points is A- to A, 80-90% or 480-540 points is B- to B+, 70-
80% or 420-480 points is C- to C+, 60-70% or 360-420 points is D- to D+, and 0-60% or 0-360 points is F.

30% Weekly homework: 9 x 20 points = 180 points total
30% In class group exercises: 12 x 15 points = 180 points total
30% Projects: Focus on hypothesis, data collection, analysis: 3 x 60 points = 180 points total
10% Top Hat in class questions: 2 x 30 = 60 points

Attendance: You are expected to attend class and a portion of the final grade is directly related to your attendance since you must be in class to receive credit for the Top Hat questions and group exercises. If you will miss class, you must email me an absence form before the absence in order to make up work. Missed work will not be accepted except for approved excused absences. (Official policies are at: http://clas.uiowa.edu/faculty/teaching-policies-resources-student-absences.)

Late Work: Homework and Group Work may be turned in up to 2 days after the deadline for a penalty of -2 points. After that it will not be accepted. To balance this, the lowest Homework and Group Work will be dropped at the end of the semester.

Module 1: I choose you!
In this module, you will learn about Pokémon® including Types, Stats, IVs and CP.

Week 1: Organization of course, basic game play. Pokémon® types and attributes.
Mathematical ideas: Sets, set notation, union, intersection, complements, Venn diagrams.

Week 2: Stats, base stats and IVs.
Mathematical ideas: Order of operations, functions, functions defined by formulas and functions defined by tables.

Week 3: Combat Power, CP.
Mathematical ideas: Functions defined piecewise (CPM), square roots, power functions.

Week 4: Levels and leveling up.
Mathematical ideas: Invertible and non-invertible functions.

Week 5: Pokécoins and Pokénomics. Earn and spend.
Mathematical ideas: Ratios, units and dimensional analysis, optimal strategies and balancing your Pokémon® budget.

Project 1: Catch a cohort of one Pokémon® species to compare and contrast.
Stage 1 (10 points): Proposal. Describe your catch method and commit to catching at least twenty of your target Pokémon®. Pick two attributes or stats you will focus on and suggest a hypothesis for how they may be related.
Stage 2 (20 points): Data collection and data management. Organize and submit the data that you collected.
Stage 3 (30 points): Final project report, an analysis of your catch method and your cohort. This analysis will include at a minimum: Venn diagrams for attributes, an evaluation of all stats for the highest and lowest CP Pokémon® you caught, and a bar or line graph.

Module 2: Gotta Catch ‘em all®
In this module you will learn about catching Pokémon®, including modifiers such as berries, balls, throws.

Week 6: Three shakes and a click.
Mathematical ideas: Discrete probability, independence.

Week 7: Pokéballs.
Mathematical ideas: Discrete random variables, uniform random variables, conditional probability.

Week 8: Where to search.
Mathematical ideas: Continuous probability. Pdf and cdf.

Week 9: Berries.
Mathematical ideas: Mean, median, mode.

Week 10: Curveballs, nice/great/excellent throws.
Mathematical ideas: variance, standard deviation, correlation.

Project 2: Correlation is not causation
Stage 1 (10 points): Proposal. Choose two variables to compare and design your experiment.
Ideas: Are CP and height correlated? Are curve balls really any better? Are great throws correlated with CP?
Stage 2 (20 points): Data collection and data management. Organize and submit the data that you collected.
Stage 3 (30 points): Final project report, an analysis of your experiment. This analysis will include at a minimum: discussion of mean, standard deviation and correlation.

Module 3: To be the very best
In this module you will learn about Player vs Player Pokémon® battles, including damage and defense.

Week 11: Moves and move types.
Mathematical ideas: Introduction to game theory.

Week 12: Fast moves, damage per second and energy per second.
Mathematical ideas: Rate of change, average rate of change

Week 13: Charge moves, total damage output.
Mathematical ideas: Total change

Week 14: Tankiness.
Mathematical ideas: percentages and percentiles

Week 15: Other types of battles, Team Rocket and Gym battles.

Project 3: Build your battle team.
Stage 1 (10 points): Proposal. Select your battle team and an explanation of your choices.
Stage 2 (20 points): Data collection and data management. You will participate in battles with classmates and submit the data that you collected with battle outcomes.
Stage 3 (30 points): Final project report, an analysis of the battle data. This analysis will include at a minimum: calculations of damage per second as well as total damage for each Pokémon® pair in the battle (up to 6).

Changes to the Syllabus:
What follows is tentative, especially in this first in person teaching of this course, I am certain we will make changes as we go. Therefore, the instructor reserves the right to make adjustments to this syllabus. Any changes will be announced in class and posted on ICON.

Calendar for Spring 2023:

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Module 1: I Choose You!</td>
<td></td>
</tr>
<tr>
<td>Wk1 Mon</td>
<td>1/16</td>
<td>No class,</td>
<td></td>
</tr>
<tr>
<td>Wk1 Wed</td>
<td>1/18</td>
<td>Syllabus, Pokémon® Types and Set Theory</td>
<td>Read 8.1-8.2</td>
</tr>
<tr>
<td>Wk1 Thur*</td>
<td>1/19</td>
<td>Venn Diagrams, Union, Intersection, Complement</td>
<td>GW 1</td>
</tr>
<tr>
<td>Wk2 Mon</td>
<td>1/23</td>
<td>Stats, functions, order of operations</td>
<td>HW 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Read 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>https://gamepress.gg/pokemongo/cp-multiplier</td>
</tr>
<tr>
<td>Wk2 Wed</td>
<td>1/25</td>
<td>Base stats, IVs and functions from tables and formulas</td>
<td>Read 3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>https://www.eurogamer.net/articles/2017-06-30-pokemon-go-cp-meaning-explained-how-to-get-the-highest-cp-values-create-the-most-powerful-team-6002</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Topic</td>
<td>Read (Resources)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>Wk2 Thur*</td>
<td>1/26</td>
<td>Comparison of base stats, Discuss Project 1</td>
<td>GW 2</td>
</tr>
</tbody>
</table>
| Wk3 Mon | 1/30 | Combat Power (CP) and piecewise functions | HW 2
Read 3.4-5
https://gamepress.gg/pokemongo/pokemon-stats-advanced |
| Wk3 Wed | 2/1 | Exponential and power functions | https://pokemon.fandom.com/wiki/Eeveelution |
| Wk3 Thur* | 2/2 | Eevee® evolutions. Feedback on Proposals | Project 1 Stage 1: Proposal
GW 3 |
| Wk4 Mon | 2/6 | Levels, cost/benefit analysis of leveling up | HW 3
Read 4.1-4.2
https://pokeassistant.com/stardust
https://igeekout.net/pokemon-levels-in-pokemon-go/ |
| Wk4 Wed | 2/8 | Functions and their inverses, non-invertible functions | Read 4.3
https://gamepress.gg/pokemongo/power-up-costs |
| Wk4 Thur* | 2/9 | Units and Dimensional Analysis | Project 1 stage 2: Data
GW 4 |
| Wk5 Mon | 2/13 | PokeCoins and Ratios | Read https://progameguides.com/pokemon/pokemon-go-how-to-get-coins-guide |
| Wk5 Thur* | 2/16 | Share Final Projects | Project 1 Phase3: Final Report |
| Module 2: Gotta Catch ‘Em All* | | | |
| Wk6 Mon | 2/20 | Catching Pokémon®, discrete probability | Read 8.3
https://gamepress.gg/pokemongo/catch-mechanics |
<p>| Wk6 Wed | 2/22 | Independent events, Bernoulli | Read 8.4 |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Task</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wk6 Thur*</td>
<td>2/23</td>
<td>Random Variables</td>
<td>https://www.eurogamer.net/articles/2017-03-23-we-used-to-catch-pokemon-wrong</td>
</tr>
<tr>
<td>Wk7 Mon</td>
<td>2/27</td>
<td>Three Shakes And a Click</td>
<td>GW 5</td>
</tr>
<tr>
<td>Wk7 Wed</td>
<td>3/1</td>
<td>Discrete Random Variables, uniform random variables</td>
<td>HW 4 Read 9.4</td>
</tr>
<tr>
<td>Wk7 Thur*</td>
<td>3/2</td>
<td>Pokéballs and conditional probability</td>
<td>GW 6</td>
</tr>
<tr>
<td>Wk8 Mon</td>
<td>3/6</td>
<td>Pokéball, Great Ball, Ultra Ball</td>
<td>HW 5 Read 9.1-9.2</td>
</tr>
<tr>
<td>Wk8 Wed</td>
<td>3/8</td>
<td>Where to search, Continuous Random Variables</td>
<td>HW 5 Read 9.1-9.2</td>
</tr>
<tr>
<td>Wk9 Mon</td>
<td>3/20</td>
<td>Pokémon® Height distribution feedback on Proposals</td>
<td>Project 2 Stage 1: Proposal GW 7</td>
</tr>
<tr>
<td>Wk9 Thur*</td>
<td>3/23</td>
<td>Data fitting, least squares</td>
<td>Read 10.2 https://www.makeuseof.com/tag/excel-basic-statistics/</td>
</tr>
<tr>
<td>Wk10 Mon</td>
<td>3/27</td>
<td>Analyzing your data in Excel: mean, median, mode</td>
<td>Project 2 stage 2: data GW 8</td>
</tr>
<tr>
<td>Wk10 Mon</td>
<td>3/27</td>
<td>Nice/Great/Excel lent Throws and</td>
<td>Read 10.3</td>
</tr>
<tr>
<td>Week</td>
<td>Day</td>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Wk10</td>
<td>Thur*</td>
<td>3/30</td>
<td>Share Final Projects</td>
</tr>
<tr>
<td>Module 3: To be the very best</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wk11</td>
<td>Thur*</td>
<td>4/6</td>
<td>balanced triples in the battle chart</td>
</tr>
<tr>
<td>Wk12</td>
<td>Mon</td>
<td>4/10</td>
<td>Fast moves and rates of change</td>
</tr>
<tr>
<td>Wk12</td>
<td>Thur*</td>
<td>4/13</td>
<td>DPS, EPS, dimensional analysis, Discuss Project 3</td>
</tr>
<tr>
<td>Wk13</td>
<td>Mon</td>
<td>4/17</td>
<td>Charge moves, total damage output</td>
</tr>
<tr>
<td>Wk13</td>
<td>Thur*</td>
<td>4/20</td>
<td>Gym battles and PVP battles, Feedback on Proposals</td>
</tr>
<tr>
<td>Wk14</td>
<td>Mon</td>
<td>4/24</td>
<td>Defensive strategies, percentages and percentiles</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Topic</td>
<td>Resources</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Wk14 Wed</td>
<td>4/26</td>
<td>Tankiness, computing the winner</td>
<td>Read https://pokemongohub.net/post/questions-and-answers/move-damage-output-actually-calculated/ You can also try your team here: https://www.pokebattler.com</td>
</tr>
<tr>
<td>Wk14 Thur*</td>
<td>4/27</td>
<td>Battle Time!</td>
<td>Project 3 stage 2: data GW 12</td>
</tr>
<tr>
<td>Wk15 Wed</td>
<td>5/3</td>
<td>Wrap up and ACE forms</td>
<td></td>
</tr>
<tr>
<td>Wk15 Thur*</td>
<td>5/4</td>
<td>Share Final Projects</td>
<td>Project 3 stage 3: final report</td>
</tr>
</tbody>
</table>
ATTENDANCE AND CLASSROOM EXPECTATIONS: Students are responsible for attending class and for knowing an instructor’s attendance policies, which vary by course and content area. All students are expected to attend class and to contribute to its learning environment in part by complying with University policies and directives regarding appropriate classroom behavior or other matters.

ABSENCES: Students are responsible for communicating with instructors as soon they know that an absence might occur or as soon as possible in the case of an illness or an unavoidable circumstance. Students can use the CLAS absence form to help communicate with instructors who will decide if the absence is excused or unexcused; the form is located on ICON within the top banner under "Student Tools." Delays by students in communication with an instructor could result in a forfeit of what otherwise might be an excused absence (https://clas.uiowa.edu/students/handbook/attendance-absences). ABSENCES: ILLNESS, UNAVOIDABLE CIRCUMSTANCES, AND UNIVERSITY SPONSORED ACTIVITIES

Students who are ill, in an unavoidable circumstance affecting academic work, or who miss class because of a University sponsored activity are allowed by UI policy to make up a missed exam. Documentation is required by the instructor except in the case of a brief illness. Students are responsible for communicating with instructors as soon as the absence is known (https://opsmanual.uiowa.edu/students/absences-class#8.1).

ABSENCES: HOLY DAYS: The University is prepared to make reasonable accommodations for students whose religious holy days coincide with their classroom assignments, test schedules, and classroom attendance expectations. Students must notify their instructors in writing of any such Religious Holy Day conflicts or absences within the first few days of the semester or session, and no later than the third week of the semester. If the conflict or absence will occur within the first three weeks of the semester, the student should notify the instructor as soon as possible. See Operations Manual 8.2 Absences for Religious Holy Days for additional information.

ABSENCES: MILITARY SERVICE OBLIGATIONS: Students absent from class due to U.S. veteran or U.S. military service obligations (including military service-related medical appointments, military orders, and National Guard Service obligations) must be excused without penalty. Instructors must make reasonable accommodations to allow students to make-up exams or other work. Students must communicate with their instructors about the expected possibility of missing class as soon as possible. (For more information, see https://opsmanual.uiowa.edu/iv-8-absences-class%C2%A0-%C2%A0%238.0).

ACADEMIC MISCONDUCT: All undergraduates enrolled in courses offered by CLAS have in essence agreed to the College's Code of Academic Honesty. Academic misconduct affects a student's grade and is reported to the College which applies an additional sanction, such as suspension. Outcomes about misconduct are communicated through UI email (https://clas.uiowa.edu/students/handbook/academic-fraud-honor-code).

ACADEMIC ACCOMMODATIONS FOR STUDENTS WITH DISABILITIES: The University is committed to providing an educational experience that is accessible to all students. If a student has a diagnosed disability or other disabling condition that may impact the student’s ability to complete the course requirements as stated in the syllabus, the student may seek accommodations through Student Disability Services (SDS). SDS is responsible for making Letters of Accommodation (LOA) available to the student. The student must provide a LOA to the instructor as early in the semester as possible, but requests not made at least two weeks prior to the scheduled activity for which an accommodation is
sought may not be accommodated. The LOA will specify what reasonable course accommodations the student is eligible for and those the instructor should provide. Note that accommodations are not granted retroactively but from the time of the student’s request to the instructor onward. Additional information can be found on the SDS website.

CLASS RECORDINGS: PRIVACY AND SHARING: Course lectures and discussions are sometimes recorded or live-streamed. These are only available to students registered for the course and are the intellectual property of the faculty member. These materials may not be shared or reproduced without the explicit written consent of the instructors. Students may not share these recordings with those who are not enrolled in the course; likewise, students may not upload recordings to any other online environment. Doing so is a breach of the Code of Student Conduct and could be a violation of the Federal Education Rights and Privacy Act (FERPA); also see https://dos.uiowa.edu/policies/code-of-student-life/.

COMMUNICATION: UI EMAIL: Students are responsible for all official correspondences sent to their UI email address (uiowa.edu) and must use this address for any communication with instructors or staff in the UI community (Operations Manual, III.15.2). Emails should be respectful and brief, with complex matters addressed during the instructor’s drop-in hours, for example. Faculty are not expected to answer email after business hours or during the weekends.

COMPLAINTS ABOUT ACADEMIC MATTERS: Students with a complaint about a grade or a related academic issue should first visit with the instructor and then with the course supervisor (if one is assigned), and next with the Chair of the department or program offering the course. If not resolved, students may bring their concerns to the College of Liberal Arts and Sciences: https://clas.uiowa.edu/students/handbook/student-rights-responsibilities.

FINAL EXAMINATION POLICIES: The final exam schedule is published during the fifth week of the fall and spring semesters or on the first day of summer classes; students are responsible for knowing the date, time, and place of their final exams. Students should not make travel plans until knowing this information. A student with exams scheduled on the same day and time or who have more than two final exams on the same day should visit this page for how to resolve these problems by the given deadline: https://registrar.uiowa.edu/makeup-final-examination-policies. No exams may be scheduled the week before finals; some exception, however, have been made for labs, language courses, and off-cycle courses (https://registrar.uiowa.edu/final-examination-scheduling-policies).

FREE SPEECH AND EXPRESSION: The University of Iowa supports and upholds the First Amendment protection of freedom of speech and the principles of academic and artistic freedom. We are committed to open inquiry, vigorous debate, and creative expression inside and outside of the classroom. Visit Free Speech at Iowa for more information on the University’s policies on free speech and academic freedom (https://freespeech.uiowa.edu/).

HOME OF THE COURSE: The College of Liberal Arts and Sciences (CLAS) is the home of this course, and CLAS governs the course’s add and drop deadlines, the “second-grade only” option (SGO), and other undergraduate policies and procedures. Different UI colleges may have other policies or deadlines. See https://clas.uiowa.edu/students/handbook. Questions? Contact CLAS at clasps@uiowa.edu or 319-335-2633.
MENTAL HEALTH: Students are encouraged to be mindful of their mental health and seek help as a preventive measure or if feeling overwhelmed and/or struggling to meet course expectations. Students are encouraged to talk to their instructor for assistance with specific class-related concerns. For additional support and counseling, students are encouraged to contact University Counseling Service (UCS). Information about UCS, including resources and how to schedule an appointment, can be found at counseling.uiowa.edu. Find out more about UI mental health services at: mentalhealth.uiowa.edu. Student Health can also address related concerns (https://studenthealth.uiowa.edu/). These visits are free to students. After hours, students are encouraged to call the Johnson County Community Crisis Line at (319) 351-0140 or dial 911 in an emergency.

NON-DISCRIMINATION STATEMENT: The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The university also affirms its commitment to providing equal opportunities and equal access to university facilities. For additional information on nondiscrimination policies, contact the Director, Office of Institutional Equity, the University of Iowa, 202 Jessup Hall, Iowa City, IA 52242-1316, 319-335-0705, oie-ui@uiowa.edu. Students may share their pronouns and chosen/preferred names in MyUI, which is accessible to instructors and advisors.

SEXUAL HARASSMENT: The University of Iowa prohibits all forms of sexual harassment, sexual misconduct, and related retaliation. The Policy on Sexual Harassment and Sexual Misconduct governs actions by students, faculty, staff and visitors. Incidents of sexual harassment or sexual misconduct can be reported to the Title IX and Gender Equity Office or to the Department of Public Safety. Students impacted by sexual harassment or sexual misconduct may be eligible for academic supportive measures and can learn more by contacting the Title IX and Gender Equity Office. Information about confidential resources can be found here. Watch the video for an explanation of these resources.