Course ICON site: To access the course site, log into Iowa Courses Online (ICON) https://icon.uiowa.edu/index.shtml using your Hawk ID and password.

Course Home: The College of Liberal Arts and Sciences (CLAS) is the home of this course, and CLAS governs the add and drop deadlines, the “second-grade only” option (SGO), academic misconduct policies, and other undergraduate policies and procedures. Other UI colleges may have different policies.

Instructor: Isabel Darcy
Office location and office hours:
- **MWF 11:30pm – 12:15pm in 25J MLH,**
 - Join URL: https://uiowa.zoom.us/j/92642528819?pwd=SXMzbXdZcm9xNFBvNHB6Vkp1dWhVQT09
 - And by appointment.
- **Phone and E-mail:** 335-0770, isabel-darcy@uiowa.edu

Course Coordinator: Isabel Darcy
Website: https://homepage.math.uiowa.edu/~idarcy/COURSES/100/FALL22/2560.html
Office location and office hours:
- **Monday 11:30pm – 1:00pm and WF 11:30pm – 12:00pm in 25J MLH,**
 - Join URL: https://uiowa.zoom.us/j/92642528819?pwd=SXMzbXdZcm9xNFBvNHB6Vkp1dWhVQT09
 - And by appointment.
- **Phone and E-mail:** 335-0770, isabel-darcy@uiowa.edu

DEO Contact Information: Ryan Kinser, 14 MLH, ryan-kinser@uiowa.edu

Prerequisites: (MATH:1560 or MATH:1860) and (MATH:2700 or MATH:2550)

Some of the policies relating to this course (such as the drop deadline) are governed by its administrative home, the College of Liberal Arts and Sciences, 120 Schaeffer Hall.

Description of Course: Ordinary differential equations and applications; first-order equations; higher order linear equations; systems of linear equations, Laplace transforms, phase plane, stability.

Objectives and Goals of the Course: Be able to identify and solve the following types of differential equations:

1. First order linear equations including the method of integrating factors; Nonlinear equations, in particular separable equations.
2. Second order linear constant coefficient equations, both homogeneous and non-homogeneous. This includes methods of characteristic equations, undetermined coefficients, and variation of parameters.
3. Generalization of the techniques for second order to higher order linear constant coefficient equations, both homogeneous and non-homogeneous.
4. Laplace transform method, including solutions of second order problems with discontinuous forcing terms and impulse responses.
5. Systems of first order linear constant coefficient equations, both homogeneous and non-homogeneous. This includes solutions of homogeneous problems using eigenvalues.
6. Phase plane, stability.
TEXTBOOK: The ICON Direct program will be used to provide required course materials via your ICON course site.

Your U-Bill will be charged automatically after your course has started, unless you opt out prior to the last day for tuition and fee reduction course deadline. Specific opt out information will be provided in the course syllabus and in the opt out tool.

Elementary Differential Equations And Boundary Value Problems Wileyplus Ecommerce Single Term Required
ISBN: 978EEGRP44029
Author: William E. Boyce Richard C. DiPrima Douglas B. Meade
Publisher: Wiley ©2022
Approximately $57.24 will be billed to your U-Bill

- Chapter 1: (1.1-1.3) Introduction to differential equation: examples and basic concepts.
- Chapter 2: (2.1-2.5, 2.7-2.8) First order equations and method of integrating factors for linear equations; Separable equations; Applications (in particular population dynamics). Existence and uniqueness theorems; autonomous equations, equilibrium and stability.
- Chapter 3: (3.1-3.8) Theory of second order linear constant coefficient equations and applications. Characteristic equations; Existence and uniqueness theorems; Principle of superposition; linear dependence and independence; Wronskian; Reduction of orders; Undetermined coefficients and variation of parameters.
- Chapter 4: (4.1-4.4) Higher order equations are covered briefly to extend the theory and methods of second order equations.
- Chapter 6: (6.1-6.6) Laplace transform and Laplace transform method for solving linear initial value problems (IVPs) (in particular for IVP with discontinuous forcing terms and impulse responses.
- Chapter 7: (7.1, 4, 5, 6, 7) Theory of first order linear systems with constant coefficients including real and complex eigenvalues.
- Chapter 9: (9.1-9.3) Phase plane, stability, and if time permits cover 9.3 for nonlinear theory.

Grading System: Plus/minus grading will be used.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-</td>
<td>90% - 92%</td>
<td>2 midterms</td>
</tr>
<tr>
<td>B-</td>
<td>80% - 82%</td>
<td>Final exam</td>
</tr>
<tr>
<td>B</td>
<td>80% - 88%</td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>88% - 90%</td>
<td>Quizzes bi-weekly, attendance and class participation</td>
</tr>
<tr>
<td>C-</td>
<td>60% - 62%</td>
<td>Homework weekly</td>
</tr>
<tr>
<td>C</td>
<td>62% - 78%</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>78% - 80%</td>
<td></td>
</tr>
<tr>
<td>D-</td>
<td>50% - 52%</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>52% - 58%</td>
<td></td>
</tr>
<tr>
<td>D+</td>
<td>58% - 60%</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>< 50%</td>
<td></td>
</tr>
</tbody>
</table>

ALL EXAMS ARE COMPREHENSIVE unless specified otherwise.

Grade cuts and Grade Distribution: Two midterms and the final exam are common exams for all sections.

Calculators and other electronic devices are not allowed during the exams.
Midterm Exams:
MIDTERM 1: 6:30PM - 8:00PM 9/28/2022 Thu W290 CB / 100 PH
MIDTERM 2: 6:30PM - 8:00PM 11/07/2022 Tue AUD MH

Date and Time of the Final Exam
The final examination date and time will be announced by the Registrar generally by the fifth week of classes and it will be announced on the course ICON site once it is known. Do not plan your end of the semester travel plans until the final exam schedule is made public. It is your responsibility to know the date, time, and place of the final exam. According to Registrar's final exam policy, students have a maximum of two weeks after the announced final exam schedule to request a change if an exam conflict exists or if a student has more than two exams in one day (see the policy here). It is the student's responsibility to know the date, time, and place of the final exam.

TENTATIVE TIMETABLE
Week 1: Go over the syllabus. Sections 1.1-1.3
Week 2: Sections 2.1-2.3
Week 3: Sections 2.4-2.5
Week 4: Sections 2.7, 2.8, 3.1
Week 5: Sections 3.2-3.5;
Week 6: 3.5, Review
Mid Term Exam 1: Chapters 1 and 2 and 3.1-3.5 Thursday of the 6th week September 28, 2023, 6:30PM - 8:00PM, in W290 CB / 100 PH
Week 7: Sections 3.7, 3.8
Week 8: Sections 3.8, 4.1, 4.2, 4.3
Week 9: Sections 4.3, 3.6, 4.4, 6.1
Week 10: Sections 6.2-6.4
Week 11: 6.5 and Review
Mid Term Exam 2: Chapters 3 and 4 and 6.1-6.4 Tuesday of the 12th week, November 7, 2023, 6:30PM - 8:00PM, in AUD MH
Week 12: Sections 6.6, 7.1, 7.4 (HW 6.5-7.4)
Week 13: Sections 7.5, 7.6, 7.7
Fall Break November 20 - 27
Week 14: Sections 9.1, 9.2
Week 15: 9.3 (optional), Review

Final exam will be comprehensive

Course Policies:
ATTENDANCE AND CLASSROOM EXPECTATIONS
Students are expected to attend every class. Absences may affect your grade.
All students are expected to attend class and to contribute to its learning environment in part by complying with University policies and directives regarding appropriate classroom behavior or other matters.

Academic Honesty and Misconduct
All students in CLAS courses are expected to abide by the CLAS Code of Academic Honesty. Undergraduate academic misconduct must be reported by instructors to CLAS according to these procedures. Graduate academic misconduct must be reported to the Graduate College according to Section F of the Graduate College Manual.

Rules on Student Collaboration:
In this class, students are allowed to talk with others about homework. However, do not share your written work with others or ask others to see their completed assignments since both are considered academic misconduct. In other words, you can discuss a problem with other students, but you write your solution alone. If you worked/discussed a
problem with others, you must state their names on your homework before the beginning of that problem, even if you wrote the solution yourself. HWs showing duplication will be considered as the result of academic dishonesty. If you need help, please stop by during my office hours. Students are responsible for understanding this policy; if you have questions, ask for clarification.

Student Complaints
Students with a complaint about a grade or a related matter should first discuss the situation with the instructor and/or the course supervisor (if applicable), and finally with the Director or Chair of the school, department, or program offering the course.

Undergraduate students should contact CLAS Undergraduate Programs for support when the matter is not resolved at the previous level. Graduate students should contact the CLAS Associate Dean for Graduate Education and Outreach and Engagement when additional support is needed.

Drop Deadline for this Course
You may drop an individual course before the deadline; after this deadline you will need collegiate approval. You can look up the drop deadline for this course here. When you drop a course, a “W” will appear on your transcript. The mark of “W” is a neutral mark that does not affect your GPA. Directions for adding or dropping a course and other registration changes can be found on the Registrar’s website. Undergraduate students can find policies on dropping and withdrawing here. Graduate students should adhere to the academic deadlines and policies set by the Graduate College.

College of Liberal Arts and Sciences (CLAS) Course Policies
Attendance and Absences
University regulations require that students be allowed to make up examinations which have been missed due to illness or other unavoidable circumstances. Students with mandatory religious obligations or UI authorized activities must discuss their absences with me as soon as possible. Religious obligations must be communicated within the first three weeks of classes.

Exam Policies
Communication: UI Email
Students are responsible for all official correspondences sent to their UI email address (uiowa.edu) and must use this address for any communication with instructors or staff in the UI community.

University Policies
Accommodations for Students with Disabilities
Basic Needs and Support for Students
Classroom Expectations
Exam Make-up Owing to Absence
Free Speech and Expression
Mental Health
Military Service Obligations
Non-discrimination
Religious Holy Days
Sexual Harassment/Misconduct and Supportive Measures
Sharing of Class Recordings

Where to Get Help (in addition to office hours):
• Math Tutorial Lab: https://math.uiowa.edu/math-tutorial-lab

• Engineering Tutoring: https://engineering.uiowa.edu/current-students/academic-support-and-tutoring/engineering-tutoring

• Tutor Iowa: https://tutor.uiowa.edu/

• Math Platoon (for military-connected students): https://math.uiowa.edu/diversity-and-outreach/math-platoon

• Other tutoring resources: https://math.uiowa.edu/math-tutorial-lab/other-tutoring-resources