A guide to generalized Nevanlinna-Pick theorems

Rachael M. Norton

Northwestern University

Midwest Women in Math Symposium University of Iowa April 13, 2019

Recall...

Let
$$\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}.$$

Bounded analytic function

For an analytic function $f: \mathbb{D} \to \mathbb{C}$, define the *sup norm of f* by $||f||_{\infty} := \sup\{|f(z)| \mid z \in \mathbb{D}\}$. We say f is bounded if $||f||_{\infty} < \infty$.

Positive semidefinite matrix

Let A be an $N \times N$ square matrix with entries in \mathbb{C} . Assume $A = A^*$, where A^* is the conjugate transpose of A. We say that A is *positive semidefinite* if any of the following are true:

- ② All the eigenvalues of A are nonnegative.
- 3 All its leading principal minors are nonnegative.

Classical Nevanlinna-Pick Theorem

Theorem (Pick 1915)

Given N distinct points $z_1,\ldots,z_N\in\mathbb{D}$ and N points $\lambda_1,\ldots,\lambda_N\in\mathbb{C}$, there exists an analytic function $f:\mathbb{D}\to\mathbb{C}$ such that $||f||_\infty\leq 1$ and

$$f(z_i) = \lambda_i, i = 1, \ldots, N,$$

if and only if the Pick matrix

$$\left[\frac{1-\overline{\lambda_i}\lambda_j}{1-\overline{z_i}z_j}\right]_{i,j=1}^N$$

is positive semidefinite.

Distilled version

Given

- N distinct points in a unit disc
- N points

there exists an interpolating function f with $||f|| \le 1 \iff$ a certain matrix is positive semidefinite.

Distilled version

Given

- N distinct points in a unit disc (initial data)
- N points (target data)

there exists an interpolating function f with $||f|| \le 1 \iff$ a certain matrix is positive semidefinite (Pick matrix).

Early Generalizations

- (Nagy-Koranyi 1956) Target data in $M_n(\mathbb{C})$.
- (Sarason 1967) Commutant lifting in $H^{\infty}(\mathbb{D}) = \{f : \mathbb{D} \to \mathbb{C} \mid f \text{ is analytic and bounded} \}$ implies classical Nevanlinna-Pick theorem and Nagy-Koranyi theorem.
- (Ball-Gohberg 1985) Initial data in $M_m(\mathbb{C})$ and target data in $M_n(\mathbb{C})$, proved via commutant lifting.

More generalizations

- (Ball-Gohberg 1985) Initial data in $M_m(\mathbb{C}) = B(\mathbb{C}^m)$ and target data in $M_n(\mathbb{C}) = B(\mathbb{C}^n)$, proved via commutant lifting.
- (Constantinescu-Johnson 2003) Initial data in $B(H)^n$ and target data in B(H), proved via displacement equation.
- (Muhly-Solel 2004) Initial data in a W^* -correspondence and target data in B(H), proved via commutant lifting.

Goal

Understand the relationship between Constantinescu-Johnson's theorem and Muhly-Solel's theorem

- Understand Constantinescu-Johnson's setting
- 2 Brief introduction to W^* -correspondences
- Generalize Constantinescu-Johnson's theorem to the W^* -correspondence setting
- Compare C-J's theorem with M-S's theorem

Fix

• a Hilbert space H.

- the initial data are in $\{\eta=egin{bmatrix}\eta_1\\\vdots\\\eta_n\end{bmatrix}\mid\eta_i\in B(H)\}$
- the target data are in B(H)

Fix

- a Hilbert space H
- the bimodule \mathbb{C}^n over \mathbb{C}
- the homomorphism $\sigma: \mathbb{C} \to B(H)$ given by $\sigma(a) = aI_H$.

Then

$$ullet$$
 the initial data are in $\{\eta=egin{bmatrix}\eta_1\ dots\ \eta_n\end{bmatrix}\mid\eta_i\in B(H)\}$

• the target data are in B(H)

Fix

- a Hilbert space H
- the bimodule \mathbb{C}^n over \mathbb{C}
- the homomorphism $\sigma: \mathbb{C} \to B(H)$ given by $\sigma(a) = aI_H$.

- the initial data are in $\{\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} \mid \eta_i \in B(H) \}$ $= \{\eta : H \to \mathbb{C}^n \otimes H \mid \eta \circ al_H = al_{\mathbb{C}^n \otimes H} \circ \eta \}$
- the target data are in B(H)= $\{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$

Fix

- a Hilbert space H
- the bimodule \mathbb{C}^n over \mathbb{C}
- the homomorphism $\sigma: \mathbb{C} \to B(H)$ given by $\sigma(a) = aI_H$.

- the initial data are in $\{\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} \mid \eta_i \in B(H) \}$ $= \{\eta : H \to \mathbb{C}^n \otimes H \mid \eta \circ al_H = al_{\mathbb{C}^n \otimes H} \circ \eta \}$
- the target data are in B(H)= $\{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$

Fix

- a Hilbert space H
- the bimodule \mathbb{C}^n over \mathbb{C}
- the homomorphism $\sigma: \mathbb{C} \to B(H)$ given by $\sigma(a) = aI_H$.

- the initial data are in $\{\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} \mid \eta_i \in B(H) \}$ $= \{\eta : H \to \mathbb{C}^n \otimes H \mid \eta \circ al_H = al_{\mathbb{C}^n \otimes H} \circ \eta \}$
- the target data are in B(H)= $\{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$

Fix

- a Hilbert space H
- the bimodule \mathbb{C}^n over \mathbb{C}
- the homomorphism $\sigma: \mathbb{C} \to B(H)$ given by $\sigma(a) = aI_H$.

- the initial data are in $\{\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} \mid \eta_i \in B(H)\}$ $= \{\eta : H \to \mathbb{C}^n \otimes H \mid \eta \circ al_H = al_{\mathbb{C}^n \otimes H} \circ \eta\}$
- the target data are in B(H)= $\{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$

Fix

- a Hilbert space H
- the bimodule \mathbb{C}^n over \mathbb{C}
- the homomorphism $\sigma: \mathbb{C} \to B(H)$ given by $\sigma(a) = aI_H$.

- the initial data are in $\{\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} \mid \eta_i \in B(H) \}$ = $\{\eta: H \to \mathbb{C}^n \otimes H \mid \eta \circ al_H = al_{\mathbb{C}^n \otimes H} \circ \eta \}$ (intertwining space)
- the target data are in B(H)= $\{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$

Fix

- a Hilbert space H
- the bimodule \mathbb{C}^n over \mathbb{C}
- the homomorphism $\sigma: \mathbb{C} \to B(H)$ given by $\sigma(a) = aI_H$.

- the initial data are in $\{\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} \mid \eta_i \in B(H) \}$ = $\{\eta: H \to \mathbb{C}^n \otimes H \mid \eta \circ al_H = al_{\mathbb{C}^n \otimes H} \circ \eta \}$ (intertwining space)
- the target data are in B(H)= $\{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$ (commutant of $\sigma(\mathbb{C})$ in B(H))

W^* -algebra

Definition

A W^* -algebra M is a C^* -algebra that is a dual space. In particular,

- norm $\|\cdot\|$ on M
- involution * on M
- $||a^*a|| = ||a^*|| ||a||$ for all $a \in M$

Examples of W^* -algebras

- C
- $M_n(\mathbb{C})$
- \bullet B(H), where H is a Hilbert space

W*-correspondence

Definition

A W^* -correspondence E over a W^* -algebra M is

- right Hilbert C*-module over M
 - right M-module
 - M-valued inner product on E
 - complete w.r.t. norm induced by inner product
- self-dual (\implies all bounded operators on E are adjointable)
- left action of M on E.

Examples of W^* -correspondences

•
$$M = E = \mathbb{C}$$

• $a \cdot c \cdot b = acb$
• $\langle c, d \rangle = \overline{c}d$
• $M = \mathbb{C}, E = \mathbb{C}^n$
• $a \cdot \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \cdot b = \begin{bmatrix} ac_1b \\ \vdots \\ ac_nb \end{bmatrix}$
• $\left\langle \begin{bmatrix} c_1 \\ \vdots \\ \end{bmatrix}, \begin{bmatrix} d_1 \\ \vdots \\ d \end{bmatrix} \right\rangle = \sum \overline{c_i} d_i$

- Any Hilbert space H is a W^* -correspondence over $\mathbb C$
- Any W^* -algebra is a W^* -correspondence over itself

W^* -correspondence setting

Fix

- a Hilbert space H
- a W^* -correspondence E over a W^* -algebra M
- a faithful, normal homomorphism $\sigma: M \to B(H)$

define

- the intertwining space $E^{\sigma} := \{ \eta : H \to E \otimes H \mid \eta \sigma(a) = (\varphi(a) \otimes I_H) \eta \quad \forall a \in M \}$
- the commutant $\sigma(M)' = \{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$

W^* -correspondence setting

Fix

- a Hilbert space H
- a W^* -correspondence E over a W^* -algebra M
- a faithful, normal homomorphism $\sigma: M \to B(H)$

define

- the intertwining space $E^{\sigma} := \{ \eta : H \to E \otimes H \mid \eta \sigma(a) = (\varphi(a) \otimes I_H) \eta \quad \forall a \in M \}$
- the commutant $\sigma(M)' = \{x \in B(H) \mid x\sigma(a) = \sigma(a)x \quad \forall a \in M\}$

Generalization of Constantinescu-Johnson's theorem

Let E be a W^* -correspondence over the W^* -algebra M, and let $\sigma:M\to B(H)$ be a faithful, normal homomorphism.

Theorem (N. 2017)

Let $\mathfrak{z}_1,\ldots,\mathfrak{z}_N$ be N distinct elements of E^{σ} with $\|\mathfrak{z}_i\|<1$ for all i, and let $\Lambda_1,\ldots,\Lambda_N\in\sigma(M)'$. There exists $X\in H^{\infty}(E^{\sigma})$ with $\|X\|\leq 1$ such that

$$X(\mathfrak{z}_i) = \Lambda_i, i = 1, \ldots, N,$$

if and only if the operator matrix

$$\left[C(\mathfrak{z}_i)^*(I_{\mathscr{F}(E)}\otimes (I_H-\Lambda_i^*\Lambda_j))C(\mathfrak{z}_j)\right]_{i,i=1}^N$$

is positive semidefinite.

Muhly-Solel's theorem

Theorem (Muhly-Solel 2004)

Let $\mathfrak{z}_1,\ldots,\mathfrak{z}_N$ be N distinct elements of E^σ with $\|\mathfrak{z}_i\|<1$ for all i, and let $\Lambda_1,\ldots,\Lambda_N\in B(H)$. There exists $Y\in H^\infty(E)$ with $\|Y\|\leq 1$ such that

$$Y(\mathfrak{z}_i^*)=\Lambda_i, \quad i=1,\ldots,N,$$

if and only if the map from $M_N(\sigma(M)')$ to $M_N(B(H))$ defined by

$$[B_{ij}]_{i,j=1}^{N} \mapsto [C(\mathfrak{z}_{i})^{*}(I_{\mathscr{F}(E)} \otimes B_{ij})C(\mathfrak{z}_{j}) - \Lambda_{i}C(\mathfrak{z}_{i})^{*}(I_{\mathscr{F}(E)} \otimes B_{ij})C(\mathfrak{z}_{j})\Lambda_{j}^{*}]_{i,j=1}^{N}$$

is completely positive.

Muhly-Solel's theorem

Theorem (Muhly-Solel 2004)

Let $\mathfrak{z}_1,\ldots,\mathfrak{z}_N$ be N distinct elements of E^σ with $\|\mathfrak{z}_i\|<1$ for all i, and let $\Lambda_1,\ldots,\Lambda_N\in \mathcal{B}(H)$. There exists $Y\in H^\infty(E)$ with $\|Y\|\leq 1$ such that

$$Y(\mathfrak{z}_{i}^{*})=\Lambda_{i}, \quad i=1,\ldots,N,$$

if and only if the map from $M_N(\sigma(M)')$ to $M_N(B(H))$ defined by

$$[B_{ij}]_{i,j=1}^{N} \mapsto [C(\mathfrak{z}_{i})^{*}(I_{\mathscr{F}(E)} \otimes B_{ij})C(\mathfrak{z}_{j}) - \Lambda_{i}C(\mathfrak{z}_{i})^{*}(I_{\mathscr{F}(E)} \otimes B_{ij})C(\mathfrak{z}_{j})\Lambda_{j}^{*}]_{i,j=1}^{N}$$

is completely positive.

Comparing the generalizations: An implication

Let $\mathfrak{z}_1,\ldots,\mathfrak{z}_N$ be distinct elements of E^{σ} with $\|\mathfrak{z}_i\|<1$ for all i, and let $\Lambda_1,\ldots,\Lambda_N\in\sigma(M)'$. If there exists $Y\in H^{\infty}(E)$ with $\|Y\|\leq 1$ such that

$$Y(\mathfrak{z}_i^*) = \Lambda_i^*, \quad i = 1, \dots, N$$

in the sense of (Muhly-Solel 2004), then there exists $X \in H^{\infty}(E^{\sigma})$ with $\|X\| \leq 1$ such that

$$X(\mathfrak{z}_i) = \Lambda_i, \quad i = 1, \ldots, N$$

in the sense of (N. 2017). However, a simple example shows that the converse is not true.

Comparing the generalizations: An equivalence

Define $\mathfrak{Z}(E^{\sigma}) = \{ \eta \in E^{\sigma} \mid a \cdot \eta = \eta \cdot a \quad \forall a \in M \}.$

Theorem (N.)

Let $\mathfrak{z}_1, \ldots, \mathfrak{z}_N$ be N distinct elements of $\mathfrak{Z}(E^{\sigma})$ with $\|\mathfrak{z}_i\| < 1$ for all i, and let $\Lambda_1, \ldots, \Lambda_N \in \mathfrak{Z}(\sigma(M)')$. The following are equivalent:

1 There exists $Y \in H^{\infty}(\mathfrak{Z}(E))$ with $||Y|| \leq 1$ such that

$$Y(\mathfrak{z}_i^*) = \Lambda_i^*, \quad i = 1, \dots, N$$

in the sense of (Muhly-Solel 2004).

② There exists $X \in H^{\infty}(\mathfrak{Z}(E^{\sigma}))$ with $||X|| \leq 1$ such that

$$X(\mathfrak{z}_i)=\Lambda_i, \quad i=1,\ldots,N$$

in the sense of (N. 2017).

Summary of results

- (N. 2017) and Muhly-Solel's theorem are distinct.
- — Constantinescu-Johnson and Muhly-Solel's theorems are distinct.
- However, when the W^* -correspondence and W^* -algebra are commutative, the theorems yield the same result.

Future work: more generalizations

- In 2017, Jennifer Good proved a generalization of Muhly-Solel's theorem for a weighted Hardy algebra.
- Goal: Generalize (N. 2017) to the setting of the weighted Hardy algebra.

References

- T. Constantinescu and J. L. Johnson, *A Note on Noncommutative Interpolation*, Canad. Math. Bull. **46** (1) (2003), 59-70.
- P. Muhly and B. Solel, *Hardy Algebras, W*-correspondences and interpolation theory*, Math. Ann. **330** (2004), 353-415.
- R. Norton, *Comparing Two Generalized Noncommutative Nevanlinna-Pick Theorems*, Complex Analysis and Operator Theory (2017) 10.1007/s11785-016-0540-9.