MS/PhD Qualifying exam
 Numerical Analysis II (22M:171)
 August 22, 2014

Closed book/closed notes.
 All questions are equally weighted.
 Show all working.

1. Multistep methods. Consider the general multistep method

$$
y_{n+1}=\sum_{j=0}^{p} a_{j} y_{n-j}+h \sum_{j=-1}^{p} b_{j} f\left(t_{n-j}, y_{n-j}\right)
$$

In order to prove convergence of a particular order for this method we need two basic conditions: a stability condition, and a consistency condition. Give these conditions. Use them to determine if, and with what order, the leap-frog method converges:

$$
y_{n+1}=y_{n-1}+2 h f\left(t_{n}, y_{n}\right)
$$

2. Runge-Kutta methods. The implicit trapezoidal rule is

$$
y_{n+1}=y_{n}+\frac{1}{2} h\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right] .
$$

Describe what is meant by the stability region of a Runge-Kutta method. What is the stability region for the implicit trapezoidal method? Rigorously justify your answer.
3. $L U$ factorization and linear systems. The perturbation theorem for linear systems states that if $A x=b,(A+E) \widehat{x}=b+d$, and $\left\|A^{-1}\right\|\|E\|<1$, then

$$
\frac{\|\widehat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)(\|E\| /\|A\|)}\left[\frac{\|E\|}{\|A\|}+\frac{\|d\|}{\|b\|}\right]
$$

where $\kappa(A)=\left\|A^{-1}\right\|\|A\|$ is the condition number. Using this, how many digits of accuracy are expected in the computed solution \widehat{x} given that the matrix A and right-hand side b are known to 5 digits, but $\kappa(A) \approx 10^{3}$?

The backward error theory for $L U$ factorization by Wilkinson shows that the computed solution \widehat{x} of a system $A x=b$ exactly satisfies $(A+E) \widehat{x}=b$ where $\|E\|_{\infty} \leq 3 \mathbf{u}\left(\|A\|_{\infty}+\|\widehat{L}\|_{\infty}\|\widehat{U}\|_{\infty}\right)$ where \widehat{L} and \widehat{U} are the computed L and U factors in the $L U$ factorization. If $\|\widehat{L}\|_{\infty}\|\widehat{U}\|_{\infty} /\|A\|_{\infty}$ is modest (say ≈ 10), give an estimate for the relative error $\|\widehat{x}-x\|_{\infty} /\|x\|_{\infty}$ in terms of $\kappa(A)$ in the ∞-norm.
4. Least squares, Cholesky and $Q R$ factorization. The normal equations for solving a least squares problem $\min _{x}\|A x-b\|_{2}$ are $A^{T} A x=A^{T} b$. Describe precisely what the Cholesky and $Q R$ factorizations are. Show how to solve the least squares problem using either the $Q R$ factorization applied to the original system, or Cholesky factorization applied to the normal equations for the least squares problem. Also show that the R matrix in the $Q R$ factorization of A is one of the factors in a Cholesky factorization of $A^{T} A$.

