Ph.D. qual. exam./M.S. comp. exam. on Numerical analysis.
Friday August 18, 2017.

There are two Parts. In Part I, answer at least 5 out of 7 questions. In Part II, answer at least 5 out of 7 questions. Only the best 5 of each Part will count.

Part I, answer at least 5 out of 7 questions:

1. (a) Give the Taylor polynomial $P_2(x)$ of degree 2 about $a = 0$ of the function $f(x) = 1/(1 + x)^{1/3}$.

 (b) What is the relative condition number of the function $f(x) = 1/(1 + x)^{1/3}$ at $x = -10^{-9}$?

 (c) Give at least 12 correct significant decimal digits of
 $$g(x) = \frac{9}{x} \left(\frac{1}{(1 + x)^{1/3}} - 1 \right)$$

 at $x = -10^{-9}$.

 (d) Explain succinctly why the calculator gives an inaccurate numerical result when evaluating $g(x)$ directly for $x = -10^{-9}$.

2. Consider the interpolation polynomial $P_n(x)$ of degree n of the function $f(x) = \cos(x)$ on the interval $[0, \pi/2]$ with $n + 1$ Chebyshev nodes x_j on $[0, \pi/2]$.

 (a) Give the expression of the $n + 1$ Chebyshev nodes x_j on $[0, \pi/2]$.

 (b) These $n + 1$ Chebyshev nodes x_j minimize
 $$\max_{x \in [0, \pi/2]} |\psi_n(x)|$$

 where $\psi_n(x)$ is a polynomial of degree $n + 1$ in x depending on the $n + 1$ parameters x_0, x_1, \ldots, x_n.

 Give $\psi_n(x)$.

 (c) How large should n be chosen to ensure that the error on $[0, \pi/2]$ in polynomial interpolation is less than 10^{-6}, i.e., such that
 $$\|f - P_n\|_\infty = \max_{x \in [0, \pi/2]} |\cos(x) - P_n(x)| \leq 10^{-6}?$$

3. (a) Define what is a cubic spline. In particular what is a periodic cubic spline?

 (b) Is the following function on the interval $[0, 2]$ a cubic spline? If yes is it a periodic cubic spline?
 $$s(x) = \begin{cases}
8 + 2x & \text{for} \quad x \in [0, \frac{1}{2}], \\
7 + 8x - 12x^2 + 8x^3 & \text{for} \quad x \in [\frac{1}{2}, 2].
\end{cases}$$

4. We consider 2 nonsymmetric quadrature formulas of order 3 with $s = 2$:

 * the Radau IA quadrature formula with weights $(b_1, b_2) = (1/4, 3/4)$ and nodes $(c_1, c_2) = (0, 2/3)$;

 * the Radau IIA quadrature formula with weights $(b_1, b_2) = (3/4, 1/4)$ and nodes $(c_1, c_2) = (1/3, 1)$.

 We now consider a composite quadrature formula defined as follows: on each subinterval $[x_j, x_j + h_j]$ we first apply the Radau IA quadrature formula on the subinterval $[x_j, x_j + h_j/2]$ and then we apply the Radau IIA quadrature formula on the subinterval $[x_j + h_j/2, x_j + h_j]$.

 (a) Express this composite quadrature formula as a standard quadrature formula on the subinterval $[x_j, x_j + h_j]$ and give its coefficients.
(b) Is this composite quadrature formula symmetric?
(c) What is the order of this composite quadrature formula?

5. (a) Compute the Fourier coefficients \(a_k, b_k, k = 0, 1, 2, \ldots \) of the periodic function \(f(t) = |t| \) on the interval \([-\pi, \pi]\) repeated periodically with period \(2\pi\).

(b) What is the trigonometric polynomial \(S_n(t) \) for \(n = 7 \) minimizing \(\int_{-\pi}^{\pi} (f(t) - S_n(t))^2 dt \)?

6. (a) Define the Legendre polynomials \(P_k(x) \) and give \(P_0(x), P_1(x), \) and \(P_2(x) \).

(b) Find the polynomial \(q_2(x) \) of degree \(\deg(q_2) \leq 2 \) approximating the function \(f(x) = x^{5/3} \) on the interval \([-1,1]\) which minimizes

\[
\int_{-1}^{1} (f(x) - q_2(x))^2 dx.
\]

7. Define quasi-Newton methods to approximate a solution to a system of nonlinear equations \(F(x) = 0 \) with \(F : \mathbb{R}^n \to \mathbb{R}^n \). In particular define the "good" Broyden update and give an explicit formula for the update.

Part II, answer at least 5 out of 7 questions:

1. We consider the following matrix

\[
A = \begin{bmatrix} 16 & -8 & 4 \\
-8 & 13 & 4 \\
4 & 4 & 9 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.
\]

(a) Calculate by hand the matrix factor \(R \) of the Cholesky decomposition of \(A \).

(b) Give the exact value of the determinants \(\det(R) \) and \(\det(A) \).

(c) Give the exact values of \(|||A|||_1 \) and \(|||A|||_{\infty} \).

(d) Is the matrix \(A \) is (strictly) positive definite (you will be given no credit if you base your proof on the eigenvalues of \(A \) obtained with a calculator)?

2. (a) Define Gauss-Seidel iterations to approximate the solution to a system of linear equations \(Ax = b \) with matrix \(A \in \mathbb{R}^{n \times n} \) and \(b \in \mathbb{R}^n \)

(b) Consider the system of linear equations

\[
\begin{bmatrix} 4 & 1 \\
8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\
x_2 \end{bmatrix} = \begin{bmatrix} 2 \\
3 \end{bmatrix}.
\]

Starting from the initial vector

\[
x^{(0)} = \begin{bmatrix} x_1^{(0)} \\
x_2^{(0)} \end{bmatrix} := \begin{bmatrix} 1 \\
2 \end{bmatrix},
\]

do Gauss-Seidel iterations converge to the solution \(x^* \) of the system of linear equations (1), i.e., do we have \(\lim_{k \to \infty} x^{(k)} = x^* \)? Prove convergence or divergence (computing the first few iterates is not a proof).

3. Consider the linear least squares problem

\[
\min_{x \in \mathbb{R}^n} ||b - Ax||_2
\]

where \(A \in \mathbb{R}^{m \times n} \) with \(m \geq n \), \(b \in \mathbb{R}^m \), and \(x \in \mathbb{R}^n \).

(a) Give the normal equations that a minimizer \(x^* \) of (2) must satisfy.
(b) Suppose $A \in \mathbb{R}^{m \times n}$ is of rank n and that we have a QR decomposition of A with $Q \in \mathbb{R}^{m \times m}$ orthogonal and $R \in \mathbb{R}^{m \times n}$ upper triangular, show how to obtain a minimizer x^* of (2) using this QR decomposition of A.

(c) Find $x \in \mathbb{R}^2$ minimizing $\|b - Ax\|_2$ for

$$A := \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 2}, \quad b := \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} \in \mathbb{R}^3.$$

4. Consider the system of ODEs $\dot{x} = f(t, x)$ and the following explicit Runge-Kutta method

\[\begin{align*}
X_1 &= x_0, \\
X_2 &= x_0 + h \frac{1}{2} f(t_0, X_1), \\
X_3 &= x_0 + h \left(-f(t_0, X_1) + 2f(t_0 + \frac{h}{2}, X_2) \right), \\
x_1 &= x_0 + h \left(\frac{1}{8} f(t_0, X_1) + \frac{3}{8} f(t_0 + \frac{h}{2}, X_2) + \frac{1}{2} f(t_0 + h, X_3) \right).
\end{align*} \]

(a) What is the local order p of this method?

(b) What is the (linear) stability function $R(z)$ of this method ($\dot{z} = \lambda z$ and $z := h\lambda$)?

5. We consider the following implicit linear multistep method applied to $\dot{x} = f(t, x)$ with stepsize h (using the notation $f_j := f(t_j, x_j)$)

$$x_{n+1} = x_n + \frac{h}{12} (5f_{n+1} + 8f_n - f_{n-1}).$$

(a) What is the local order of this method?

(b) Is it 0-stable?

(c) Is it globally convergent?

6. What is a Householder matrix $H \in \mathbb{R}^{n \times n}$? What is a matrix $M \in \mathbb{R}^{n \times n}$ in Hessenberg form? Explain in detail the first step of the reduction of a matrix $A \in \mathbb{R}^{n \times n}$ to Hessenberg form by using a Householder matrix.

7. To find the eigenvalues of a matrix $A \in \mathbb{C}^{n \times n}$ write down the QR algorithm with single shift. Show that if $A \in \mathbb{C}^{n \times n}$ is Hermitian ($A^* = A$) then all T_k for $k = 0, 1, 2, 3, \ldots$ (of the QR algorithm with single shift) are also Hermitian ($T_k^* = T_k$).