Qualifying Exam for Math 5600

August 19, 2020

Dr. Zahra Aminzare

INSTRUCTION:

- The questions for this exam (Math 5600) are divided into two parts.

Answer both questions in Part I.
 Answer only one question in Part II.

- If you work on more than one question in Part II, please state clearly which one should be graded.
- No additional credit will be given for more than one of the questions in Part II.
- If no choice between the questions is indicated, then the first optional question attempted will be the only one graded.
- All the questions have equal points.
- Please start a new page for every new question and put your name on each sheet.
- Please turn in the exam questions with your solutions.
- Please turn in the scratch papers. All scratch papers will be discarded.

Good Luck!

Part I. Please answer BOTH questions 1 and 2.

Question 1. Consider the motion of an undamped harmonic oscillator, given by the equation

$$
\ddot{x}=-4 x,
$$

where $x(t)$ represents the location of the oscillator, and \ddot{x} denotes the second derivative of x with respect to t.
(a) Introduce a new variable y for the velocity of the oscillator and formulate the motion of the harmonic oscillator as a two dimensional linear system of the form $\dot{X}=A X$, where $X=(x, y)^{\top}$ and A is a 2×2 matrix.
(b) Find the eigenvalues and eigenvectors of A.
(c) Show there exists an invertible matrix T so that $T^{-1} A T=B$ where B is in Jordan canonical form.
(d) Use the Jordan canonical form to find the general solution of the system $\dot{X}=A X$.

Question 2. Consider the system

$$
\begin{aligned}
& \dot{x}=y-a x \\
& \dot{y}=-a y+\frac{x}{1+x}
\end{aligned}
$$

where a is a positive parameter. Answer the following questions.
(a) For each qualitatively different value of $a>0$, find all equilibrium points. When the Hartman-Grobman theorem applies, classify each equilibrium point.
(b) Describe the bifurcation that occurs as a varies and find the critical value of a (call it a^{*}) at which the bifurcation occurs. (You do not need to compute the center manifold at $a=a^{*}$.)
(c) Sketch the phase plane (phase portrait) for $a>a^{*}$ which qualitatively describes the full dynamics of the system. Hint: You should indicate the equilibrium points, a heteroclitic orbit, the stable and unstable curves, and six trajectories.

Part II. Please answer ONLY ONE of the following questions.

Question 3. Consider

$$
\begin{aligned}
\dot{x} & =y-x \\
\dot{y} & =x-y-x z \\
\dot{z} & =x y-z .
\end{aligned}
$$

(a) State the definitions of a (Lyapunov) stable equilibrium point and an asymptotically stable equilibrium point.
(b) Is the origin $(0,0,0)^{\top}$ a (Lyapunov) stable equilibrium point or asymptotically stable equilibrium point?
(c) What is the basin of attraction?

Hint: Find an appropriate Lyapunov function and use LaSalle's invariance principle.

Question 4. Consider the system

$$
\begin{aligned}
\dot{x} & =x(1-r)-y \\
\dot{y} & =y(1-r)+x,
\end{aligned}
$$

where $r^{2}=x^{2}+y^{2}$. This system has a periodic solution $\gamma(t)=(\cos (t), \sin (t))^{\top}$. Determine the stability of $\gamma(t)$.

Hint: You may use ONE (and only one) of the following methods:

1. Compute the characteristic multipliers for $\gamma(t)$. (Liouville's Formula may help.)
2. Compute the Poincaré map of $\gamma(t)$. (Polar coordinate transformation may help.)
