Qualifying Exam: PDE, Fall, 2017
Choose any three out of the five problems. Please indicate your choice. Show all your work.

1. Find the solution to the initial value problem

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \quad x \in R, t>0 \\
& u(x, 0)= \begin{cases}2 & x \leq 0 \\
2-x & 0<x \leq 2 \\
1 & 2<x\end{cases}
\end{aligned}
$$

2. Show that if the C^{1} initial data $f(x)$ has $f^{\prime}\left(x_{0}\right)<0$ for some x_{0} and that $F^{\prime \prime}(u) \geq 1$ for all u, then the C^{1} solution of

$$
u_{t}+F(u)_{x}=0, \quad u(x, 0)=f(x)
$$

must break down at some time $t>0$.
3. Let $u(x, t)$ and $v(x, t)$ be solutions of the equation $u_{t}-k u_{x x}=q(x, t), \quad x \in R, \quad 0<t \leq T$ satisfy

$$
u(x, 0)=f(x), v(x, 0)=g(x), x \in R
$$

respectively, where $k>0, T>0$, and $f(x), g(x), q(x, t)$ are continuous and bounded functions. Suppose that $u(x, t)$ and $v(x, t)$ are continuous and bounded on $x \in R, 0 \leq t \leq T$, and that $f(x) \leq g(x), x \in R$.
Show that $u(x, t) \leq v(x, t)$ for $x \in R, 0 \leq t \leq T$.
4. Solve the initial-boundary-value problem

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad 0<x<1, t>0 \\
& u(0, t)=0, \quad u(1, t)=1, \quad t>0 \\
& u(x, 0)=x^{2}, \quad 0<x<1
\end{aligned}
$$

Also find a steady-state solution $U(x)$ of the above problem.
5. Consider the damped wave equation problem

$$
\begin{aligned}
& u_{t t}+d u_{t}-c^{2} u_{x x}=0, \quad x \in R, t>0 \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad x \in R
\end{aligned}
$$

where $c>0, d>0$ and f, g are smooth functions with compact support.
Define energy as $e(t)=\frac{1}{2} \int_{R}\left(u_{t}^{2}(x, t)+c^{2} u_{x}^{2}(x, t)\right) d x$.
Show that the energy is nonincreasing as t increases.

