Ph.D. Qualifying Exam in Topology

Ben Cooper, Keiko Kawamuro

August 14, 2023

Instructions.

- Do eight problems: four from part A and four from part B.
- This is a closed book examination: you should have no books, technology or paper of your own.
- Please do your work on the paper provided according to the format outlined below.
- On each page of your solutions
* Write your name
* Write the page number
* Indicate which problem is being addressed
- When you start a new problem, start a new page
- Only write on one side of the paper
- Make a cover page and indicate which eight problems you want graded.
- Always justify your answers unless explicitly instructed otherwise.
- You may use theorems if the problem is not a step in proving that theorem. You must to state any theorems that you use clearly and carefully.

Part A - Algebraic Topology

1. (a) Find an action of the group \mathbb{Z}^{2} on the space \mathbb{R}^{2} and prove that it satisfies the following condition:
For every point $\overrightarrow{\mathbf{x}}=(x, y) \in \mathbb{R}^{2}$ there exists an open set $U \subset \mathbb{R}^{2}$ containing $\overrightarrow{\mathbf{x}}$ such that the images $\left\{g(\overrightarrow{\mathbf{x}}) \mid g \in \mathbb{Z}^{2}\right\}$ are pairwise disjoint.
(b) Construct a normal covering using the above group action. (Need to show your covering is normal.)
2. Consider 2-dimensional surfaces.
(a) Find the fundamental group of a sphere.
(b) Find the fundamental group of a torus.
(c) Find the fundamental group of a 4-punctured sphere (a sphere minus four distinct points).
(d) Find the fundamental group of a 4-punctured torus.
(e) Find the fundamental group of a genus 2 surface.
3. (a) Find a 2:1 covering map from a 4 -punctured torus to a 4 -punctured sphere.
(b) Find the deck transformation group of the above covering map.
4. (a) Find the universal covering space of a torus.
(b) Find the universal covering space of a 1-punctured torus.
5. Answer the questions using van Kampen's theorem.
(a) Let X and Y be genus 2 solid handle bodies. Let α and β be curves on ∂X. Let $f: \partial X \rightarrow \partial Y$ be a homeomorphism of a genus 2 surface such that the images $f(\alpha)$ and $f(\beta)$ of the curves α and β are as depicted in the figure. Glue X and Y along their boundary surfaces using the map f. Find the fundamental group of the resulting space $(X \cup Y) / f$.
(b) Let $g: \partial X \rightarrow \partial Y$ be another homeomorphism such that the images $g(\alpha)$ and $g(\beta)$ are as depicted in the figure. Find the fundamental group of the resulting space $(X \cup Y) / g$.
6. Let Y be a Y-shape graph (three edges meeting at a one vertex). Take a product $Y \times[0,1]$ and identifying the two ends $(Y \times\{0\}$ and $Y \times\{1\})$ via a one-third twist as shown in the figure. Call the CW complex Z. Show that Z has a circle boundary. Then attach a disk to Z along the circle boundary. Compute the fundamental group of the resulting CW complex.

Figme for $(5-a, b)$

Figure for (6)

$Y \times[0,1]=$

$$
Z=Y \times[0,1] / \begin{aligned}
& a \sim b^{\prime} \\
& b \sim c^{\prime} \\
& c \sim a^{\prime}
\end{aligned}
$$

Figure 1: Figures for problems 5 and 6.

Part B

1. (a) Define a smooth n-dimensional vector bundle $\pi: E \rightarrow M$. Define a vector bundle trivial.
(b) Prove that a vector bundle $E \rightarrow M$ of dimension n determines a 1-dimensional vector bundle $\Lambda^{n}(E) \rightarrow M$.
(c) Using any definition of orientable studied in class or the textbook, prove or disprove the statement that M is orientable if and only if $\Lambda^{n}\left(T^{*} M\right)$ is the trivial bundle.
2. (a) Define a smooth manifold.
(b) If the circle $S^{1} \subset \mathbb{R}^{2}$ is defined by the subspace topology

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

then, using only the definition of smooth manifold from problem 2. (a), prove that the n-torus $\left(S^{1}\right)^{\times n}$ is a smooth manifold for all $n \geq 1$.
3. (a) If the sphere $S^{2}(r) \subset \mathbb{R}^{3}$ of radius $r>0$ is defined by the subspace topology

$$
S^{2}(r)=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=r^{2}\right\}
$$

then prove that the sphere $S^{2}(r)$ is a smooth manifold.
(b) Compute the integral

$$
\int_{S^{2}}(x d y d z-z d z d y+y d x d y)
$$

4. Let V be a real vector space of dimension n.
(a) Define the vector spaces $\Lambda^{k}\left(V^{*}\right)$ for $k=0, \ldots, n$.
(b) Recall that a bilinear form $\omega: V \times V \rightarrow \mathbb{R}$ is non-degenerate if for each $x \in V, \omega(x, y)=0$ for all $y \in V$ implies $x=0$.
Prove that $\omega \in \Lambda^{2}\left(V^{*}\right)$ is non-degenerate if and only if the map $\varphi: V \rightarrow V^{*}$ given by $\varphi(x)=\iota_{x} \omega$ is an isomorphism.
(c) Recall that a bilinear form is degenerate if it is not non-degenerate. Now suppose that $\operatorname{dim} V=n$, prove that if $\omega \in \Lambda^{2}\left(V^{*}\right)$ is degenerate then the n-fold wedge power of ω vanishes: $\omega^{n}=0$.
5. (a) Define immersion and submersion.
(b) Define embedding.
(c) Prove that if the domain is a compact manifold then a one-to-one immersion is an embedding.
6. (a) Let $X=y \frac{\partial}{\partial x}$ and $Y=x \frac{\partial}{\partial y}$. So $X, Y \in \mathcal{X}\left(\mathbb{R}^{2}\right)$ are vector fields. Compute the Lie derivative $\mathcal{L}_{X} Y$ of Y with respect to X.
(b) Let $X=y \frac{\partial}{\partial x} \in \mathcal{X}\left(\mathbb{R}^{2}\right)$ and $\omega=x d y+y d x \in \Omega^{2}\left(\mathbb{R}^{2}\right)$. Compute the Lie derivative $\mathcal{L}_{X} \omega$ of ω with respect to X.
