
Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Wednesday, August 17, 2005
Professors Frauke Bleher and Fred Goodman

Instructions: This exam has 4 parts. Do exactly 2 problems from each of the 4
parts. Responses will be judged for correctness, completeness, clarity and orderli-
ness. Justify all statements.

1. Groups:

(1) Let G be a group, and let N be a normal subgroup of G. Suppose that N
and G/N are solvable. Prove that G is solvable.

(2) The prime factorization of 2005 is

2005 = 5 · 401.

Determine all groups of order 2005 up to isomorphism.

(3) Let p be a prime integer.
(a) Show that any group of order pn has a non-trivial center.
(b) Show that any group of order p2 is abelian.

(4) There are exactly 5 groups of order 27 up to isomorphism, 2 of them non-
abelian. More information on the two non-abelian groups is given below.
Using this information, classify groups of order 135 = 27 · 5.

You do not need to use the following information, but we include it for
compeleteness: Both Z3×Z3 and Z9 admit essentially unique actions of Z3

by automorphisms, and the two non-abelian groups of order 27 are

G1 = (Z3 × Z3) o Z3

and
G2 = Z9 o Z3.

2. Rings:

All rings are assumed to have a multiplicative identity 1.
(1) Let R be a commutative ring and let J1, J2 be two ideals of R satisfying

J1 + J2 = R. Given elements a, b ∈ R prove that there exists x ∈ R such
that

x ≡ a mod J1 and x ≡ b mod J2 .

(2) Let R be a commutative ring. Prove that every maximal ideal of R is a
prime ideal. What about the converse? Is every prime ideal of R a maximal
ideal? (Either prove this or give a counter-example.)

(3) Show that the ring of 3–by–3 matrices over a field is simple.

(4) Let R be any ring and I any ideal. Let n be a natural number. Denote
n–by–n matrices over R by Matn(R). Show that Matn(I) is an ideal in
Matn(R), and Matn(R)/Matn(I) ∼= Matn(R/I).
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3. Fields:

Note: A common notation for a field extension K ⊇ E is K/E. This notation is
used in exercise (3).

(1) Let K be a field, and let L ⊇ K be the splitting field of a polynomial
f(x) ∈ K[x]. Prove that AutK(L) is a finite group.

(2) Let K be a field, and let L ⊇ K be an extension field. Show that L ⊇ K is
a finite extension if, and only if, it is finitely generated and algebraic.

(3) Let F be a field of characteristic 0.
(a) Give an example of extension fields F ⊂ E ⊂ K such that E/F is

Galois, K/E is Galois, but K/F is not Galois.
(b) Let K/F be a Galois extension whose Galois group is the symmetric

group S3. Prove that K does not contain a cyclic extension of F of
degree 3. How many non-cyclic extensions of degree 3 does K contain?
(Recall that a cyclic extension is a Galois extension with cyclic Galois
group.)

(4) Define what it means for a real number to be constructible using straight-
edge and compass. Prove that it is impossible to construct a regular 9-gon
with straightedge and compass alone.

4. Linear algebra and modules:

(1) Let D be a division ring such that the center of D contains a field K as a
subfield. (Recall that a division ring is a not necessarily commutative ring
with multiplicative identity 1 such that every non-zero element is invert-
ible.)
(a) Show that addition and multiplication in D give D the structure of a

vector space over K.
(b) Assume that D is finite dimensional over K, and let α ∈ D. Prove

that there exists a polynomial f(t) ∈ K[t] of degree ≥ 1 such that
f(α) = 0.

(c) Assume that K is algebraically closed, and D is finite dimensional over
K. Prove that D = K.

(2) Let p be a prime number, and denote the finite field with p elements by Fp,
i.e. Fp = Z/pZ.

Let S denote the 5–by–5 matrix over Fp whose entries are equal to 1
except that the entries along the diagonal are all equal to 0,

S =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


(a) Determine the Jordan canonical form of S when p 6= 5.
(b) Determine the Jordan canonical form of S when p = 5.
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(3) Let K be a field of arbitrary characteristic, and suppose that ζ is a primitive
n-th root of unity in K; that is ζn = 1, and ζs 6= 1 for any s < n. (Note:
You may not assume that ζ is a complex n–th root of unity e2kπi/n.) The
goal of this problem is to show that

1 + ζ + ζ2 + · · ·+ ζn−1 = 0.

You are going to use n–by–n matrices over K to show this. Let S de-
note the n–by–n permutation matrix corresponding to the permutation
(1, 2, 3, · · · , n). For example, for n = 5,

S =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


(a) Show that S is similar in Matn(K) to the diagonal matrix D with

diagonal entries 1, ζ, ζ2, . . . , ζn−1.
(b) Conclude that S and D have the same trace, and therefore

1 + ζ + ζ2 + · · ·+ ζn−1 = 0.

(4) Let K be a field and let R denote the ring of n–by–n matrices over K. By
an R–module, we will mean a unital, left R–module.
(a) Show that every R–module is also a K–vector space.
(b) Show that if two R–modules are isomorphic as R–modules, then they

are isomorphic as K–vector spaces.
(c) Show that a finitely generated R–module is free if, and only if, its

dimension as a K–vector space is a multiple of n2.


