Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Wednesday, August 17, 2005
Professors Frauke Bleher and Fred Goodman
Instructions: This exam has 4 parts. Do exactly 2 problems from each of the 4 parts. Responses will be judged for correctness, completeness, clarity and orderliness. Justify all statements.

1. Groups:

(1) Let G be a group, and let N be a normal subgroup of G. Suppose that N and G / N are solvable. Prove that G is solvable.
(2) The prime factorization of 2005 is

$$
2005=5 \cdot 401
$$

Determine all groups of order 2005 up to isomorphism.
(3) Let p be a prime integer.
(a) Show that any group of order p^{n} has a non-trivial center.
(b) Show that any group of order p^{2} is abelian.
(4) There are exactly 5 groups of order 27 up to isomorphism, 2 of them nonabelian. More information on the two non-abelian groups is given below. Using this information, classify groups of order $135=27 \cdot 5$.

You do not need to use the following information, but we include it for compeleteness: Both $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and \mathbb{Z}_{9} admit essentially unique actions of \mathbb{Z}_{3} by automorphisms, and the two non-abelian groups of order 27 are

$$
G_{1}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{3}
$$

and

$$
G_{2}=\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}
$$

2. Rings:

All rings are assumed to have a multiplicative identity 1.
(1) Let R be a commutative ring and let J_{1}, J_{2} be two ideals of R satisfying $J_{1}+J_{2}=R$. Given elements $a, b \in R$ prove that there exists $x \in R$ such that

$$
x \equiv a \quad \bmod J_{1} \quad \text { and } \quad x \equiv b \quad \bmod J_{2}
$$

(2) Let R be a commutative ring. Prove that every maximal ideal of R is a prime ideal. What about the converse? Is every prime ideal of R a maximal ideal? (Either prove this or give a counter-example.)
(3) Show that the ring of 3 -by-3 matrices over a field is simple.
(4) Let R be any ring and I any ideal. Let n be a natural number. Denote n-by $-n$ matrices over R by $\operatorname{Mat}_{n}(R)$. Show that $\operatorname{Mat}_{n}(I)$ is an ideal in $\operatorname{Mat}_{n}(R)$, and $\operatorname{Mat}_{n}(R) / \operatorname{Mat}_{n}(I) \cong \operatorname{Mat}_{n}(R / I)$.

3. Fields:

Note: A common notation for a field extension $K \supseteq E$ is K / E. This notation is used in exercise (3).
(1) Let K be a field, and let $L \supseteq K$ be the splitting field of a polynomial $f(x) \in K[x]$. Prove that $\operatorname{Aut}_{K}(L)$ is a finite group.
(2) Let K be a field, and let $L \supseteq K$ be an extension field. Show that $L \supseteq K$ is a finite extension if, and only if, it is finitely generated and algebraic.
(3) Let F be a field of characteristic 0 .
(a) Give an example of extension fields $F \subset E \subset K$ such that E / F is Galois, K / E is Galois, but K / F is not Galois.
(b) Let K / F be a Galois extension whose Galois group is the symmetric group S_{3}. Prove that K does not contain a cyclic extension of F of degree 3 . How many non-cyclic extensions of degree 3 does K contain? (Recall that a cyclic extension is a Galois extension with cyclic Galois group.)
(4) Define what it means for a real number to be constructible using straightedge and compass. Prove that it is impossible to construct a regular 9-gon with straightedge and compass alone.

4. Linear algebra and modules:

(1) Let D be a division ring such that the center of D contains a field K as a subfield. (Recall that a division ring is a not necessarily commutative ring with multiplicative identity 1 such that every non-zero element is invertible.)
(a) Show that addition and multiplication in D give D the structure of a vector space over K.
(b) Assume that D is finite dimensional over K, and let $\alpha \in D$. Prove that there exists a polynomial $f(t) \in K[t]$ of degree ≥ 1 such that $f(\alpha)=0$.
(c) Assume that K is algebraically closed, and D is finite dimensional over K. Prove that $D=K$.
(2) Let p be a prime number, and denote the finite field with p elements by \mathbb{F}_{p}, i.e. $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$.

Let S denote the 5 -by- 5 matrix over \mathbb{F}_{p} whose entries are equal to 1 except that the entries along the diagonal are all equal to 0 ,

$$
S=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

(a) Determine the Jordan canonical form of S when $p \neq 5$.
(b) Determine the Jordan canonical form of S when $p=5$.
(3) Let K be a field of arbitrary characteristic, and suppose that ζ is a primitive n-th root of unity in K; that is $\zeta^{n}=1$, and $\zeta^{s} \neq 1$ for any $s<n$. (Note: You may not assume that ζ is a complex n-th root of unity $e^{2 k \pi i / n}$.) The goal of this problem is to show that

$$
1+\zeta+\zeta^{2}+\cdots+\zeta^{n-1}=0
$$

You are going to use $n-$ by $-n$ matrices over K to show this. Let S denote the n-by- n permutation matrix corresponding to the permutation $(1,2,3, \cdots, n)$. For example, for $n=5$,

$$
S=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(a) Show that S is similar in $\operatorname{Mat}_{n}(K)$ to the diagonal matrix D with diagonal entries $1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}$.
(b) Conclude that S and D have the same trace, and therefore

$$
1+\zeta+\zeta^{2}+\cdots+\zeta^{n-1}=0
$$

(4) Let K be a field and let R denote the ring of $n-$ by $-n$ matrices over K. By an R-module, we will mean a unital, left R-module.
(a) Show that every R-module is also a K-vector space.
(b) Show that if two R-modules are isomorphic as R-modules, then they are isomorphic as K-vector spaces.
(c) Show that a finitely generated R-module is free if, and only if, its dimension as a K-vector space is a multiple of n^{2}.

