PH.D. QUALIFYING EXAM IN ALGEBRA

Friday, January 13, 2006
Professors Frauke Bleher and Fred Goodman

Instructions: This exam has 4 parts. Do exactly 2 problems from each of the 4
parts. Responses will be judged for correctness, completeness, clarity and orderli-
ness. Justify all statements.

1. GROUPS:

(1) Let Z be the center of a group G, and suppose that G/Z is cyclic. Prove
that G is abelian.

(2) Let A be a finite abelian group, written additively, with |A] = n > 2. For
m € Z*, define A,, = {x € A| mz =0}. If n = m - m/, where m,m’ € Z*
and ged(m,m’) = 1, show that A = A,, ® A,,r. Please do not cite a
theorem, but prove this from scratch.

(3) In this exercise you may wish/need to use that the automorphism group of

Z is isomorphic to Zg.

(a) Show that any group G of order 28 has a normal subgroup N of order
7. Let A denote a 2-Sylow subgroup, of order 4. Show that G is the
semi-direct product of N and A.

(b) Show that there exists a non-abelian group of order 28 with 2-Sylow
subgroup isomorphic to Zg X Z.

(¢) Show that there exists a non-abelian group of order 28 with 2-Sylow
subgroup isomorphic to Z,.

(4) (a) Show that for any abelian group, z — x~! is a group automorphism
of order 2. In particular, a : [z] — [—z] is an automorphism of Z,, of

order 2.
(b) Show that Z,, x Z, is isomorphic to the dihedral group D, of order 2n

x
(defined as the group of symmetries of the regular n-gon.)
(¢) Determine the center of D,,. Note that the answer is different for n
even and odd.

2. Rings:

All rings are assumed to have a multiplicative identity 1.

(1) Let K be a field.
(a) Prove that K|t] is a Euclidean domain.
(b) Prove that every Euclidean domain is a principal ideal domain.

(2) Prove that a commutative ring with identity is a field if, and only if, it is
simple.
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Let R be a unique factorization domain, and let p be a prime element in
R. Let

Ry ={a/b|a,be R,p/b}.
Prove that R,y is a principal ideal domain. Describe all ideals of R, and
state which ones are maximal.

Let R be an integral domain, let J be an ideal in R, and let p be a nonzero,
nonunit element of R.
(a) Show that J is maximal ideal == J is a prime ideal.
(b) Show that p is a prime element == p is irreducible.
(c) If R is a principal ideal domain, show that p is irreducible = pR is
a maximal ideal.
(d) Give an example of an integral domain R and an irreducible element
p such that pR is not a maximal ideal.

3. FIELDs:

Let F be a field and let ¢ be transcendental over F' (i.e. not algebraic).
Let z € F(t) and suppose z ¢ F. Write = as a quotient of relatively prime
polynomials, £ = f(t)/g(t). Prove that F(t) is algebraic over F(z) and
express the degree [F(t) : F(z)] in terms of the degrees of f(t) and g(¢).

Let F be a field, and let f(t) € F[t] be a polynomial of degree > 1.
(a) Give the definition of a splitting field of f(t) over F.
(b) Prove that there exists a splitting field of f(t) over F.

Let f(z) = z® — 2. Prove that f(z) is irreducible over Q. Determine the
splitting field K of f(z) over Q and the degree [K : Q]. Write down all the
permutations on the roots of f that are induced by elements of Gal(K/Q).

Determine the isomorphism type of Gal(K/Q).

Let f(z) be an irreducible polynomial of degree n over a field K of char-
acteristic 0. Define the Galois group of f(z) over K. Show that the Galois
group of f(x) acts faithfully and transitively on the roots of f(z) in a split-
ting field. Do not quote any big theorem, such as the fundamental theorem
of Galois theory, but prove this from scratch.

4. LINEAR ALGEBRA AND MODULES:;

Let V be a finite dimensional vector space over a field K, V # {0}. Let
R = Endg (V). Define a left R-module structure on V by fv = f(v) for all
f € R and all v € V. Prove that this makes V into a left R-module, and
prove that V is a simple left R-module, i.e. the only R-submodules of V'
are {0} and V.
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(2) Let V be a finite dimensional vector space over a field K, V # {0}, and let
A,B:V — V be K-linear maps.
(a) Show that the eigenvalues of AB are the same as the eigenvalues of
BA.
(b) Suppose A is invertible and A is an eigenvalue of A. Prove that A #0
and that A~1 is an eigenvalue of A~1,

(3) (a) Determine the possible Jordan canonical forms for a nilpotent 4-by—4
matrix.
(b) Show that if A is a nilpotent n~by—n matrix, then E + A is invertible,
where E is the n-by—n identity matrix.

(4) Consider the matrix

1 2 -4 4
2 -1 4 -8
A= 1 0 1 -2
1 1 -2 3

The characteristic polynomial of A is
xa(z) = (z — 1)%(z + 1)(z — 3).

Find the Jordan canonical form over C of the matrix 4 and find an invertible
matrix P such that P~1AP is the Jordan form of A.



