Ph.D. Qualifying Exam and M.S. Comprehensive Exam in Algebra

Wednesday, January 23, 2008
Professors Frauke Bleher and Vic Camillo

Instructions: Do exactly two problems from each section for a total of eight problems. Be sure to justify your answers. Good luck.

1. Groups:

(1) Let G be a group of order 30 . Show that G has a normal subgroup of order 15. You may use the Sylow Theorems.
(2) Let G be a finite group. Show that the order of any subgroup of G divides the order of G. Do not quote any theorems, but prove this from scratch.
(3) Suppose T and H are groups and that $\varphi, \varphi^{\prime}: T \rightarrow \operatorname{Aut}(H)$ are homomorphisms. Suppose there is an isomorphism $\alpha: T \rightarrow T$ such that

$$
\varphi^{\prime} \circ \alpha=\varphi .
$$

Show that the semi-direct products $H \rtimes_{\varphi} T$ and $H \rtimes_{\varphi^{\prime}} T$ are isomorphic. (Here H is the normal subgroup in these semi-direct products.)
Hint: Use α to define a set map from the product set $H \times T$ to itself.
(4) Let G be a group (finite or infinite). Prove that if H is a subgroup of finite index n, then G contains a normal subgroup K with $K \leq H$ and $|G: K| \leq n!$.
Hint: Use the natural action of G on the left cosets of H in G.

2. Rings:

All rings are assumed to have a multiplicative identity 1 .
(1) An element in a ring R is called irreducible, if whenever $p=x y$, where x and y are elements of R, then one of x or y is a unit. Let R be principal ideal domain and p an irreducible element in R. Show directly that if p divides $a b$, where a and b are elements of R, then p divides a or p divides b.
(2) Let R be a commutative ring. Recall that an ideal M in R is called maximal if M is not equal to R and if I is an ideal in R with $M \subseteq I \subseteq R$ then $M=R$ or $M=I$. Show that M is a maximal ideal of R if and only if R / M is a field.
(3) Let R be a ring. Recall that an element $x \in R$ is called nilpotent if $x^{n}=0$ for some $n \in \mathbb{Z}^{+}$.
(a) Suppose R is commutative. Prove that the set

$$
N(R)=\{x \in R \mid x \text { nilpotent }\}
$$

is an ideal in R. This is called the nilradical of R.
(b) Prove that the elements $x=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ are nilpotent elements in the matrix ring $\operatorname{Mat}_{2}(\mathbb{Z})$. Prove that $x+y$ is not nilpotent, and deduce that the set of nilpotent elements in $\operatorname{Mat}_{2}(\mathbb{Z})$ is not an ideal.
(4) Show directly the following variant of Eisenstein's criterion: Let P be a prime ideal in the unique factorization domain R and let $f(x)=a_{n} x^{n}+$ $\cdots+a_{1} x+a_{0}$ be a polynomial in $R[x]$ where $n \geq 1$. Suppose $a_{n} \notin P$, $a_{n-1}, \ldots, a_{0} \in P$ and $a_{0} \notin P^{2}$. Prove that $f(x)$ is irreducible in $F[x]$, where F is the fraction field of R.

3. Fields:

(1) Let F be a field and let $g(x)$ be an irreducible polynomial over F. Show directly that there is an extension field of F in which $g(x)$ has a root.
(2) Let $f(x)=x^{3}+2 x^{2}+2 x+1 \in \mathbb{Q}[x]$. Determine the Galois group of $f(x)$ over \mathbb{Q}. Please show all your work.
(3) Let F be a field of characteristic 0 , and let E / F be finite field extension of degree n. Let A be an algebraically closed field containing F. Let $\sigma_{1}, \ldots, \sigma_{n}$ be all the distinct embeddings of E over F into A (i.e. σ_{i} extends the identity on F for all $1 \leq i \leq n$). For $\alpha \in E$, define the trace and norm of α, respectively, from E to F by

$$
\begin{aligned}
\operatorname{Tr}_{F}^{E}(\alpha) & =\sum_{i=1}^{n} \sigma_{i} \alpha=\sigma_{1} \alpha+\cdots+\sigma_{n} \alpha \\
\mathrm{~N}_{F}^{E}(\alpha) & =\prod_{i=1}^{n} \sigma_{i} \alpha=\sigma_{1} \alpha \cdots \sigma_{n} \alpha
\end{aligned}
$$

(a) If α is algebraic over F, let

$$
p(t)=\operatorname{Irr}(\alpha, F, t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}
$$

Show that $\operatorname{Tr}_{F}^{F(\alpha)}(\alpha)=-a_{n-1}$ and $\mathrm{N}_{F}^{F(\alpha)}(\alpha)=(-1)^{n} a_{0}$.
(b) Let E / F be a finite extension with $[E: F]=n$, and let $a \in F$. Determine $\operatorname{Tr}_{F}^{E}(a)$ and $\mathrm{N}_{F}^{E}(a)$.
(4) Let F be a field of characteristic 0 and let $n \in \mathbb{Z}^{+}$. Let ζ be a primitive n-th root of unity in some extension field of F, and let $K=F(\zeta)$. Prove that K is Galois and abelian over F.

4. Linear algebra and modules:

All rings are assumed to have a multiplicative identity 1 . If M is a left R-module, we assume that $1 m=m$ for all $m \in M$.
(1) Let R be an integral domain and let M be a module over R. Define $\operatorname{Tor}(M)=\{m \in M \mid a m=0$ for some nonzero element $a \in R\}$. Show that $\operatorname{Tor}(M)$ is a submodule of M.
(2) Let R be a ring, let M be a right R-module, and let A be a right ideal in R. Define

$$
X=\left\{\sum m_{k} a_{k} \mid m_{k} \in M \text { and } a_{k} \in A\right\}
$$

Here, the sums are finite but may have a different number of non zero terms. Show that X is a submodule of M.
(3) Let R be a ring with 1 and let A_{1} and A_{2} be left R-modules. Suppose $B_{1} \subset A_{1}$ and $B_{2} \subset A_{2}$ are submodules. Prove that

$$
\left(A_{1} \oplus A_{2}\right) /\left(B_{1} \oplus B_{2}\right) \cong\left(A_{1} / B_{1}\right) \oplus\left(A_{2} / B_{2}\right)
$$

as R-modules.
(4) Determine the Jordan normal form over \mathbb{C} for the matrix

$$
\left[\begin{array}{rrrr}
0 & 0 & -1 & 2 \\
2 & -2 & -1 & 2 \\
0 & 0 & -2 & 0 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

and determine a matrix P which conjugates this matrix into its Jordan normal form.

