Instructions. Be sure to put your name on each booklet you use.

Much of this examination is “true-false”. When a problem begins with “True-false”, you are to decide if the operative assertion is true or false. If you decide that it is “true”, you are to give a proof, while if you decide that it is “false”, you are to present a counter example.

The exam is divided into two parts. The first covers real analysis and the second covers complex analysis. Each part has 5 problems. You need only work 4 problems in each part. You must indicate which 4 you are submitting for evaluation. If you want to do five in a part, that is OK. We will treat the extra problem as a bonus.

Part I
1. True-false. Lebesgue measure is continuous in the sense that the Lebesgue measure of the closure of a set coincides with the Lebesgue measure of the set.

2. True-false. Let I_1 and I_2 be two disjoint open intervals, and for $i = 1, 2$, let A_i be an arbitrary subset of I_i. Then $m^*(A_1 \cup A_2) = m^*(A_1) + m^*(A_2)$, where m^* denotes Lebesgue outer measure.

3. True-false. Let $\{f_n\}_{n \geq 0}$ be a sequence of non-negative integrable functions defined on \mathbb{R} such that

$$0 \leq f_1(x) \leq f_2(x) \leq f_3(x) \leq \ldots$$

and such that the sequence of numbers $\{\int_{\mathbb{R}} f_n(x) \, dx\}$ is bounded. Let $f(x) = \lim_{n \to \infty} f_n(x)$. Then $f(x) < \infty$ for almost all x.

4. True-false. Let σ be the function on \mathbb{R} that is zero to the left of 1, 1/2 for $1 \leq x < 2$, 3/4 for $2 \leq x < 3$, 7/8 for $3 \leq x < 4$, etc. (Thus, σ jumps by 2^{-n} at n for $n = 1, 2, \ldots$, is constant between any two consecutive integers and is continuous from the right.) If $f(x) = x$ on \mathbb{R}, then f is integrable with respect to the Lebesgue-Stieltjes measure determined by σ.

5. Let $\{f_n\}$ be a uniformly bounded sequence of measurable functions defined on the interval $[0, 1]$ and let

$$F_n(x) = \int_0^x f_n(t) \, dt \quad 0 \leq x \leq 1.$$

Show that there is a subsequence $\{F_{n_k}\}$ that converges uniformly on $[0, 1]$.

Part II
1. True-false. Suppose f is analytic in the region $0 < |z| < 1$ and suppose that for each r, $0 < r < 1$, the integral $\int_{C_r} f(z) \, dz = 0$, where C_r is the circle $|z| = r$. Then f is analytic on the open unit disc.

2. Suppose f is analytic in the annular region $1 - \epsilon < |z| < 2 + \epsilon$ for some positive ϵ. Suppose also that $|f| \leq 1$ on the circle $|z| = 1$ and that $|f| \leq 4$ on the circle $|z| = 2$. Show that $|f(z)| \leq |z|^2$ for all z, $1 < |z| < 2$.

3. True-false. Let \mathcal{G} be a domain and let z_0 be a point in \mathcal{G}. Suppose f is analytic in $\mathcal{G}/\{z_0\}$ and that f takes values in the upper half-plane. Then z_0 is a removable singularity of f.

4. Find the Laurent series representation of the function

$$f(z) = \frac{1}{z^2(1-z)}$$

that is valid in the region $1 < |z| < \infty$.

Ph.D. Qualifying Examination in Analysis
Professors Bor-Luh Lin and Paul S. Muhly

August 18, 2006
5. Let \(f \) be analytic in the open unit disc \(\mathbb{D} \) and let the Taylor series expansion for \(f \) be

\[
f(z) = \sum_{n=0}^{\infty} a_n z^n
\]

Suppose

(a) \(f(\mathbb{D}) \subseteq \mathbb{D} \)
(b) \(a_0 = 0 \)
(c) \(|a_1| = 1 \)

Calculate \(\sup\{|a_n| \mid n \geq 2\} \).