Ph.D. Qualifying Examination in Analysis

Professors Bor-Luh Lin and Paul S. Muhly

August 18, 2006
Instructions. Be sure to put your name on each booklet you use.
Much of this examination is "true-false". When a problem begins with "True-false", you are to decide if the operative assertion is true or false. If you decide that it is "true", you are to give a proof, while if you decide that it is "false", you are to present a counter example.

The exam is divided into two parts. The first covers real analysis and the second covers complex analysis. Each part has 5 problems. You need only work 4 problems in each part. You must indicate which 4 you are submitting for evaluation. If you want to do five in a part, that is OK. We will treat the extra problem as a bonus.

Part I

1. True-false. Lebesgue measure is continuous in the sense that the Lebesgue measure of the closure of a set coincides with the Lebesgue measure of the set.
2. True-false. Let I_{1} and I_{2} be two disjoint open intervals, and for $i=1,2$, let A_{i} be an arbitrary subset of I_{i}. Then $m^{*}\left(A_{1} \cup A_{2}\right)=m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)$, where m^{*} denotes Lebesgue outer measure.
3. True-false. Let $\left\{f_{n}\right\}_{n \geq 0}$ be a sequence of non-negative integrable functions defined on \mathbb{R} such that

$$
0 \leq f_{1}(x) \leq f_{2}(x) \leq f_{3}(x) \leq \ldots
$$

and such that the sequence of numbers $\left\{\int_{\mathbb{R}} f_{n}(x) d x\right\}$ is bounded. Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Then $f(x)<\infty$ for almost all x.
4. True-false. Let σ be the function on \mathbb{R} that is zero to the left of $1,1 / 2$ for $1 \leq x<2,3 / 4$ for $2 \leq x<3$, $7 / 8$ for $3 \leq x<4$, etc. (Thus, σ jumps by 2^{-n} at n for $n=1,2, \ldots$, is constant between any two consecutive integers and is continuous from the right.) If $f(x)=x$ on \mathbb{R}, then f is integrable with respect to the Lebesgue-Stieltjes measure determined by σ.
5. Let $\left\{f_{n}\right\}$ be a uniformly bounded sequence of measurable functions defined on the interval $[0,1]$ and let

$$
F_{n}(x)=\int_{0}^{x} f_{n}(t) d t \quad 0 \leq x \leq 1
$$

Show that there is a subsequence $\left\{F_{n_{k}}\right\}$ that converges uniformly on $[0,1]$.

Part II

1. True-false. Suppose f is analytic in the region $0<|z|<1$ and suppose that for each $r, 0<r<1$, the integral $\int_{C_{r}} f(z) d z=0$, where C_{r} is the circle $|z|=r$. Then f is analytic on the open unit disc.
2. Suppose f is analytic in the annular region $1-\epsilon<|z|<2+\epsilon$ for some positive ϵ. Suppose also that $|f| \leq 1$ on the circle $|z|=1$ and that $|f| \leq 4$ on the circle $|z|=2$. Show that $|f(z)| \leq|z|^{2}$ for all z, $1<|z|<2$
3. True-false. Let \mathfrak{G} be a domain and let z_{0} be a point in \mathfrak{G}. Suppose f is analytic in $\mathfrak{G} /\left\{z_{0}\right\}$ and that f takes values in the upper half-plane. Then z_{0} is a removable singularity of f.
4. Find the Laurent series representation of the function

$$
f(z)=\frac{1}{z^{2}(1-z)}
$$

that is valid in the region $1<|z|<\infty$.
5. Let f be analytic in the open unit disc \mathbb{D} and let the Taylor series expansion for f be

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

Suppose
(a) $f(\mathbb{D}) \subseteq \mathbb{D}$
(b) $a_{0}=0$
(c) $\left|a_{1}\right|=1$

Calculate $\sup \left\{\left|a_{n}\right| \mid n \geq 2\right\}$.

