Department of Mathematics	University of Iowa	Iowa City, IA	52242
110 MLH	9:0012:00, Wednesday	, August 17,	2005

NUMERICAL ANALYSIS EXAM

<u>Directions:</u> Answer all the 6 problems.

- 1. For a linearly convergent iteration $x_{n+1} = g(x_n)$, g being continuously differentiable, we have $x_{20} = 1.3254943$, $x_{21} = 1.3534339$, $x_{22} = 1.3708962$. Show how to estimate (you do not need to compute the numbers)
 - (a) the fixed-point α of the function g;
 - (b) the rate of linear convergence;
 - (c) the error αx_{22} .

Hint: From the assumption, there is a constant λ such that for n large, $(x_{n+1}-\alpha)/(x_n-\alpha) \approx \lambda$.

- 2. Let $f \in C([0, 1])$ be given and let $0 = x_0 < x_1 < \cdots < x_{N-1} < x_N = 1$ be a partition of the interval [0, 1]. Denote by s the piecewise linear interpolant of f corresponding to the partition; i.e., s(x) is a linear function on each subinterval $[x_{n-1}, x_n]$, $n = 1, \ldots, N$, and $s(x_n) = f(x_n)$, $n = 0, 1, \ldots, N$.
 - (a) Give a formula for s on each subinterval.
 - (b) Assuming $f \in C^2([0,1])$, bound the error f(x) s(x).
- 3. (a) Find the constant c that minimizes $\max_{0 \le x \le 1} |e^x c|$.
 - (b) Find the constant c that minimizes $\int_0^1 |e^x c|^2 dx$.

(c) Find an equation for the constant c that minimizes $\int_0^1 |e^x - c| dx$.

4. Consider solving the initial value problem y' = f(x, y) for $0 \le x \le 1$, $y(0) = Y_0$, f being a smooth function. Let $0 = x_0 < x_1 < \cdots < x_N = 1$ be a uniform partition of the interval [0, 1] and denote h the step size. For a constant parameter $\theta \in [0, 1]$, introduce the following generalized mid-point method

$$y_{n+1} = y_n + h \left[(1 - \theta) f(x_n, y_n) + \theta f(x_{n+1}, y_{n+1}) \right].$$

It is known that for h small enough, this relation defines a unique value y_{n+1} .

- (a) Determine the order of the method.
- (b) Show that the method is absolutely stable when $\theta \in [1/2, 1]$.

5. What is the Cholesky factorization? Find the Cholesky factorization of the matrix

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 5 & 5 \\ 1 & 5 & 14 \end{array}\right).$$

6. In iteratively solving the linear system $A\boldsymbol{x} = \boldsymbol{b}$ (det $A \neq 0$), we write A = P - N with P nonsingular, and generate a sequence $\{\boldsymbol{x}^{(k)}\}$ by the formula

$$P \boldsymbol{x}^{(k+1)} = \boldsymbol{b} + N \boldsymbol{x}^{(k)},$$

starting with some initial guess $\boldsymbol{x}^{(0)}$. Denote the residual $\boldsymbol{r}^{(k)} = \boldsymbol{b} - A \boldsymbol{x}^{(k)}$. (a) Show that the iteration formula can be equivalently expressed as

$$x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)}.$$

(b) Let $\alpha > 0$ be a constant. Define the stationary Richardson method by the formula

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha P^{-1} \boldsymbol{r}^{(k)}.$$

Show that the method converges if and only if $\alpha |\lambda|^2 < 2 \operatorname{Re} \lambda$ for any eigenvalue λ of $P^{-1}A$.