Numerical Analysis Exam

Directions: Answer all the 6 problems.

1. For a linearly convergent iteration $x_{n+1}=g\left(x_{n}\right), g$ being continuously differentiable, we have $x_{20}=1.3254943, x_{21}=1.3534339, x_{22}=1.3708962$. Show how to estimate (you do not need to compute the numbers)
(a) the fixed-point α of the function g;
(b) the rate of linear convergence;
(c) the error $\alpha-x_{22}$.

Hint: From the assumption, there is a constant λ such that for n large, $\left(x_{n+1}-\alpha\right) /\left(x_{n}-\right.$ $\alpha) \approx \lambda$.
2. Let $f \in C([0,1])$ be given and let $0=x_{0}<x_{1}<\cdots<x_{N-1}<x_{N}=1$ be a partition of the interval $[0,1]$. Denote by s the piecewise linear interpolant of f corresponding to the partition; i.e., $s(x)$ is a linear function on each subinterval $\left[x_{n-1}, x_{n}\right], n=1, \ldots, N$, and $s\left(x_{n}\right)=f\left(x_{n}\right), n=0,1, \ldots, N$.
(a) Give a formula for s on each subinterval.
(b) Assuming $f \in C^{2}([0,1])$, bound the error $f(x)-s(x)$.
3. (a) Find the constant c that minimizes $\max _{0 \leq x \leq 1}\left|e^{x}-c\right|$.
(b) Find the constant c that minimizes $\int_{0}^{1}\left|e^{x}-c\right|^{2} d x$.
(c) Find an equation for the constant c that minimizes $\int_{0}^{1}\left|e^{x}-c\right| d x$.
4. Consider solving the initial value problem $y^{\prime}=f(x, y)$ for $0 \leq x \leq 1, y(0)=Y_{0}$, f being a smooth function. Let $0=x_{0}<x_{1}<\cdots<x_{N}=1$ be a uniform partition of the interval $[0,1]$ and denote h the step size. For a constant parameter $\theta \in[0,1]$, introduce the following generalized mid-point method

$$
y_{n+1}=y_{n}+h\left[(1-\theta) f\left(x_{n}, y_{n}\right)+\theta f\left(x_{n+1}, y_{n+1}\right)\right]
$$

It is known that for h small enough, this relation defines a unique value y_{n+1}.
(a) Determine the order of the method.
(b) Show that the method is absolutely stable when $\theta \in[1 / 2,1]$.
5. What is the Cholesky factorization? Find the Cholesky factorization of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 5 & 5 \\
1 & 5 & 14
\end{array}\right)
$$

6. In iteratively solving the linear system $A \boldsymbol{x}=\boldsymbol{b}$ ($\operatorname{det} A \neq 0$), we write $A=P-N$ with P nonsingular, and generate a sequence $\left\{\boldsymbol{x}^{(k)}\right\}$ by the formula

$$
P \boldsymbol{x}^{(k+1)}=\boldsymbol{b}+N \boldsymbol{x}^{(k)},
$$

starting with some initial guess $\boldsymbol{x}^{(0)}$. Denote the residual $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k)}$.
(a) Show that the iteration formula can be equivalently expressed as

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+P^{-1} \boldsymbol{r}^{(k)}
$$

(b) Let $\alpha>0$ be a constant. Define the stationary Richardson method by the formula

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha P^{-1} \boldsymbol{r}^{(k)} .
$$

Show that the method converges if and only if $\alpha|\lambda|^{2}<2 \operatorname{Re} \lambda$ for any eigenvalue λ of $P^{-1} A$.

