Qualifying Examination Fall 2006, Section on Partial Differential Equations

August 23, 2006
(Solve three of the problems.)

1. Solve the initial value problem

$$
u_{t}+3 t^{2} u_{x}=u
$$

with $u(x, 0)=x^{2}$. Describe and draw the characteristics.
2. Compute the Fourier series

$$
\mathrm{X}_{k=0}^{\infty} a_{k} \cos (k x)
$$

for the function

$$
f(x)=\begin{array}{lll}
1 / 2 & \text { for } & x \in[0, \pi / 2] \\
1 & \text { for } & x \in(\pi / 2, \pi]
\end{array}
$$

on the interval $[0, \pi]$. Also solve the heat equation $u_{t}(x, t)=u_{x x}(x, t)$ on the square $[0, \pi] \times[0, \infty)$ with the initial value $u(x, 0)=f(x)$ and the boundary condition $u_{x}(0, t)=u_{x}(\pi, t)=0$. What does it converge to as $t \rightarrow \infty$?
3. What is the proper weak solution (i.e. the solution fulfilling the Lax entropy condition) of the equation

$$
u_{t}+u^{9} \cdot u_{x}=0
$$

for the initial values

$$
f_{1}(x)=\begin{array}{r}
1 / 2 \\
1 \text { for } x>0 \\
0 \text { for } x \leq 0
\end{array}
$$

and

$$
f_{2}(x)=\begin{gathered}
1 / 2 \\
1 \text { for } x>0 \\
-1 \text { for } x \leq 0
\end{gathered} ?
$$

4. Assume $u \in C^{2}{ }^{\mathbf{i}}{ }^{©}{ }_{x \in R^{3}}| | x \mid \leq 1{ }^{\text {a }} \mathbf{\Phi}, \Delta u \leq 6$ and $u(x) \geq 0$ for $|x|=1$. How small can $u(0)$ become?
5. Using separation of variables, find the eigenfunctions of the Laplace operator with Neumann boundary conditions on the rectangle $[0,3 \pi] \times[0, \pi]$.
