Qualifying Exam: PDE, Fall, 2008

Choose any three out of the six problems.

1. (i) Solve the initial value problem for the linear equation
 \[u_t + (x^2 + 1)u_x = 0, \quad x \in \mathbb{R}, \quad t > 0, \quad u(x, 0) = x^2, \quad x \in \mathbb{R}. \]
 (ii) Over what region in the \(x-t \) plane does the solution exist? Draw the characteristics on the \(x-t \) plane where the solution exists.

2. (i) Find the bounded solution \(u \) to the following initial-boundary-value problem
 \[u_t - u_{xx} = 0, \quad x > 0, \quad t > 0, \]
 \[u(x, 0) = f(x), \quad x \geq 0, \quad u(0, t) = 2, \quad t \geq 0 \]
 where \(f \) is continuous on \([0, +\infty)\) satisfying \(f(0) = 2 \) and \(\sup_{x \geq 0} |f(x)| = M < +\infty \).
 (ii) Find the supremum of \(|u(x, t)| \) for \(x \geq 0 \) and \(t \geq 0 \) in terms of the given data.

3. Compute the Fourier series
 \[\sum_{k=0}^{+\infty} a_k \cos(kx) \]
 for function
 \[f(x) = \begin{cases} 1 & x \in [0, \frac{\pi}{2}] \\ 0 & x \in (\frac{\pi}{2}, \pi] \end{cases} \]
 on the interval \([0, \pi]\). Also solve the heat equation \(u_t = u_{xx} \) on \([0, \pi] \times [0, +\infty)\) with the initial value \(u(x, 0) = f(x) \) and the boundary conditions \(u_x(0, t) = u_x(\pi, t) = 0 \). What does the solution converge to as \(t \to +\infty \)？

4. Solve the following initial-boundary-value problem
 \[u_{tt} - u_{xx} = 0, \quad x > 0, \quad t > 0, \]
 \[u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad x \geq 0, \]
 \[u(0, t) = 0, \quad t > 0 \]
 where \(f \) and \(g \) are smooth functions satisfying \(f(0) = g(0) = 0 \).

1
5. (i) Find a weak solution satisfying the entropy conditions for
\[u_t + \left(\frac{u^2}{2}\right)_x = 0, \quad x \in \mathbb{R}, \quad t > 0, \]
with initial data
\[u(x, 0) = \begin{cases}
2 & x < 0 \\
1 & x \geq 0
\end{cases} \]
and with initial data
\[u(x, 0) = \begin{cases}
1 & x < 0 \\
2 & x \geq 0
\end{cases} . \]

(ii) Write an upwind scheme for the above problems. What is the CFL condition for the scheme?

6. Consider the wave equation problem
\[u_{tt} - c^2 u_{xx} = q(x, t), \quad x \in \mathbb{R}, \quad t > 0, \]
\[u(x, 0) = 0, \quad u_t(x, 0) = 0, \quad x \in \mathbb{R} \]
where \(c > 0 \) and
\[q(x, t) = \begin{cases}
(1 - x^2) \sin t & |x| \leq 1 \\
0 & |x| > 1
\end{cases} . \]
Show that \(u(x, t) = 0 \) for \(|x| > ct + 1 \).