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Abstract
We present natural-age-grid Galerkin methods for a model of a biological
population undergoing aging. We use a mollified birth term in the method
and analysis. The error due to mollification is of arbitrary order, depending on
the choice of mollifier.

The methods in this paper generalize the methods presented in [1], where
the approximation space in age was taken to be a discontinuous piecewise
polynomial subspace of L2. We refer to these methods as ‘natural-age-grid’
Galerkin methods since transport in the age variable is computed through the
smooth movement of the age grid at the natural dimensionless velocity of one.
The time variable has been left continuous to emphasize this smooth motion,
as well as the independence of the time and age discretizations. The methods
are shown to be superconvergent in the age variable.

Mathematics Subject Classification: 65M15, 65M60, 35Q80, 92C15, 92C17,
92D25

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We consider a model for a biological population u(a, t) distributed in age a and time t ,

∂tu + ∂au = −µ(a, p)u, a � 0, t � 0, (1a)

where µ(a, p) � 0 is the death modulus. The total population, p, is given by

p(t) =
∫ ∞

0
u(a, t) da, t � 0. (1b)
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We have a birth condition

u(0, t) = b(u(·, t)) =
∫ ∞

0
β(a, p)u(a, t) da, t � 0. (1c)

We present natural-age-grid Galerkin methods for this system, with the addition that
newborn individuals are distributed over a small interval around age zero, rather than born
precisely at age zero. We refer to this as ‘mollified birth’. To introduce the mollification
process, we first rewrite (1a) and the birth condition (1c) as a single equation with a source
term given by a Dirac delta function. Set u(a, t) to zero for all a < 0 and extend µ to negative
a by even reflection about a = 0. Then u satisfies

∂tu + ∂au + µ(a, p)u = b(u)δ(a), a ∈ R, t � 0, (2)

The crux of the mollification process is replacing δ(a) with a bounded function m(a) that is
supported in [−s, s].

The methods presented in this paper generalize the age discretization in [1], where the
approximation space in age was taken to be a discontinuous piecewise polynomial subspace
of L2. We refer to the class of methods presented in this paper and in [1, 2] as ‘natural-age-
grid’ Galerkin methods since transport in the age variable is computed through the smooth
movement of the grid at the natural dimensionless velocity of one—rather than through an
approximation of the age derivative. This generally leaves polynomial approximation error
as the only source of error in the age variable, which in turn underlies our superconvergence
results.

Although spatial structure is not treated in this paper, the motivation for the natural-age-
grid Galerkin methods is the need for computationally efficient and robust methods so that
age structure can be added to models of populations distributed in space. The natural-age-
grid Galerkin methods differ qualitatively from previous methods that also solve such systems
along age-time characteristics [3–6]. These methods ‘shift’ the age nodes in a manner that
results in a grid with nodes that are effectively in fixed positions—every node is shifted onto
the previous location of another node. A major consequence of using an effectively fixed grid
along characteristics is the often crippling constraint that the age and time steps must remain
equal and constant in magnitude. This restriction is not mitigated in practice with the use
of high-order methods, even though once we rewrite the age-structured system with a total
derivative in age and time the number of suitable integrations methods becomes very large.

The natural-age-grid Galerkin methods, since they decouple the age and time
discretizations, provide two major benefits over these fixed-grid methods. First they allow,
in general, larger age intervals than ones restricted to be the same as the time steps. This
was the case in several applications: Proteus mirabilis swarm-colony development [7], biofilm
growth [8] and tumor invasion [9]. Second, relaxing the requirement of having constant time
steps allows adaptive time stepping.

The use of standard continuous and discontinuous finite element methods on partitions
of the age-time plane results in methods that also allow different age and time discretizations,
and the use of adaptive time stepping. However, the current state-of-the-art versions of these
methods have orders of convergence that are below those normally associated with the degree of
the approximating polynomials, demonstrated both in theory and in example systems [10–12].
This contrasts with the superconvergence properties of the natural-age-grid Galerkin methods
that were proven and illustrated with simple computational examples in [1, 2], and implemented
in applications in [7–9].

Further discussions on the history of age- and space-structured models and the numerical
methods for solving them can be found in [1, 2].
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In the methods presented in this paper, we keep time continuous to emphasize two things:
the qualitative difference between the smooth movement of the natural-age-grid Galerkin
methods and the shifting movement between fixed nodal locations in methods such as [3–6];
and the independence of the natural age grid from any suitable time discretization. We note
that the choice of time discretizations is largely left to the user in the natural-age-grid Galerkin
methods, whereas in the previous methods it was embedded by necessity into the definition
of the methods. The only constraints that occur in practice are that the time step must not be
larger than the age step (this has yet to be an issue for our problems of interest), and that a
time step must end when a new age interval is introduced (this results in no meaningful loss
in efficiency).

Leaving time continuous also simplifies the presentation and analysis of the methods. The
methods and analysis when the approximation space in age is restricted to piecewise constants
in age were presented in [2]. In this case, time was discretized using a backward Euler method,
illustrating the integration of the methods and analysis in age with a specific time discretization.

One particularly effective and simple method for adaptive time stepping is step-
doubling with local extrapolation (see [13] and references therein). Step-doubling with local
extrapolation consists of taking one step of backward Euler over a time step, and then taking
two half steps of backward Euler over the same time interval. This results in two things. First,
we can compare the two late-time solutions for the error control needed for the adaptivity
in time. Second, we can extrapolate the two solutions to get a likely second-order accurate
solution in time.

In some situations we have found that for step-doubling with local extrapolation to work
more smoothly in conjunction with the natural-age-grid Galerkin methods, we need to mollify
the birth term over several intervals. For example, this was the case for some Proteus
computations [14], whereas the computational example in [2] (see figure 9.3 in [2]) would
not benefit from mollification of the birth term, since the time steps are relatively even.

To understand the nature of the problem, if all the birthing is done in the first age interval,
the introduction of a new first interval due to the movement of the grid may result in a sudden
increase in the difficulty of the problem, prompting an adaptive method to drastically cut the
time step. This may be the case, for example, if the second derivative in the previous first age
interval becomes large with the sudden removal of birth, indicating to some adaptive time-
stepping methods that the problem has become much harder. Thus, without mollification,
the age discretization can, in certain situations, unduly influence the time discretization in an
undesirable manner.

The aim of mollification is to smooth the time-stepping process for greater efficiency
and robustness, but it is a source of additional error in the computation. This error will, in
general, be tolerable and offset by the benefits of mollification if the death modulus does not
change much near birth and the birth term is not heavily dependent on very young individuals.
For many problems, one can choose the mollification interval [−s, s] so that these issues are
reduced (see section 3).

Although mollifying the birth term is not needed in all applications of our natural-age-
grid Galerkin methods, the situations where it is of benefit are sufficiently general to warrant a
numerical analysis of the effects of mollifying the birth term in an age-structured model. We
find that the error due to mollification is of arbitrary order, depending on the choice of mollifier.
The need for mollification in specific applications is currently determined by computational
experiment.

This paper is organized as follows. We present, in order, conditions on the model equations,
the natural-age-grid Galerkin methods with mollified birth, the stability and error analyses for
these methods and a computational example.
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2. Conditions on the continuous model

We assume existence and uniqueness of smooth, non-negative solutions. Existence results
generally allow conditions that are less restrictive than what one assumes for the kind of stability
and control we seek. Existence and uniqueness results, including an extensive bibliography,
can be found in [15].

We make several assumptions:

Condition 2.1. The function β(a, p) is smooth as a function of a and ‖β(·, p)‖ � Cβ for all p.

Condition 2.2. There exist constants C0 and C1 such that for p ∈ R, µ satisfies µ(a, p) � C1

for all a and 0 < C0 � µ(a, p) for a > ac, where ac is some critical age.

Condition 2.3. The function µ(a, p) is smooth as a function of a and is uniformly Lipschitz
continuous with respect to p with Lipschitz constant Kµ. The derivative ∂aµ(a, p) exists,
is uniformly bounded by C1 as a function of all its arguments, and ‖∂aµ(·, p)‖L2(R+) � C1

uniformly as a function of p.

We choose a mollifier, m(a), that is smooth, has compact support on [−s, s], and satisfies,
for some integer λ > 0,∫ ∞

−∞
m(a)al da =

{
1, l = 0,

0, l = 1, . . . , λ.
(3)

Mollification is appropriate only when the death modulus does not change much near
birth and the birth term is not heavily dependent on very young individuals. Consequently, we
assume the following condition.

Condition 2.4. The death modulus µ(a, p) is constant for a ∈ [0, s). We extend µ to be this
constant for a ∈ (−∞, 0).

3. An age discrete method with mollified birth term

We let ũ = m∗u, where ‘∗’ denotes convolution in the age variable. Let δ(a) denote the Dirac
delta function centered at a = 0. Assume u is sufficiently smooth and that

∫ ∞
−∞ |m(a)| da is

bounded by some constant. For a ∈ (−∞, −s) ∪ (s, ∞), the error between the true solution,
u, and the mollified true solution, ũ, is

u(a, t) − ũ(a, t) = u(a, t) −
∫ ∞

−∞
m(a − α)

(
u(a) + ∂au(a)(α − a)

+
∂2
au(a)

2
(α − a)2 + · · ·

)
dα

= −
∫ ∞

−∞
m(a − α)

(
∂λ+1
a u(a)

(λ + 1)!
(α − a)λ+1 +

∂λ+2
a u(a)

(λ + 2)!
(α − a)λ+2 + · · ·

)
dα

= O(sλ+1). (4)

Let D = ∂t + ∂a . We rewrite (1a) as

Du = b(u)δ(a) − µ(a, p)u, a ∈ R, t � 0, (5)

so that

Dũ = m(a)b(u) − µ(a, p)ũ + r, a ∈ R, t � 0, (6)
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where, if a > s,

r(a, t) = µũ − m ∗ (µu)

=
∫ ∞

−∞
m(a − α)(µ(a) − µ(α))u(α) dα

=
∫ ∞

−∞
m(a − α)(u(a) + ∂au(a)(α − a) + · · ·)

·
(

−∂aµ(a)(α − a) − ∂2
aµ(a)

2
(α − a)2 + · · ·

)
dα

= O(sλ+1). (7)

Note also that the population defined by ũ,
∫

R
ũ(a, t) da is just the p(t) defined by u.

Assume that β(a, p) is extended to R × R
+ as a nonnegative function that has λ + 1

continuous derivatives in a which are bounded independently of a and p. The smoothness of
the extension of β is related to the order of accuracy that we can get in the mollification.

Let {ai}−∞
i=0 be a sequence such that a0 = ãmax, 0 < ai+1 − ai = �ai � �a � s, and

ai → −∞ as i → −∞. Let J be the set of ais. For a fixed nonnegative integer q, let C denote
the space of all piecewise continuous functions over the partition of (−∞, ãmax] defined by
J such that ϕ ∈ C has the property that ϕ restricted to [ai, ai+1) is a polynomial of degree
at most q. We think of the functions in C as being zero on (ãmax, ∞). For nonnegative t let
Ii(t) = [ai + t, ai+1 + t) and let imin(t) be the value of i such that −s ∈ Iimin(t). We suppose
that there is a k such that at most k intervals Ii(t) have nonvoid intersection with [−s, s]. We
define a finite dimensional space in age that moves along the characteristic curves, da/dt = 1:

A(t) = {ϕ : ϕ(· − t) ∈ C, ϕ(a) = 0, a < aimin(t) + t}. (8)

The dimension of A(t) is (q + 1)|imin(t)|. We take U ∈ A(t). For t �∈ J , we have the method
with mollified birth term,∫

Ii (t)

(DU)v da =
∫

Ii (t)

b(U(·, t))m(a)v(a) − µ(a, P )U(a, t)v(a) da, (9)

for every v ∈ A(t). For t ∈ J , new variables added to (9) are set to zero, and the others are
continuous. The total population density is approximated by

P(t) =
∫ ∞

−∞
U(a, t) da. (10)

4. Stability and error analyses

Let ‖ · ‖i denote the L2 norm on the interval Ii(t) and ‖ · ‖ the L2 norm over R.

Theorem 4.1 (Stability of mollified birth method). Assume conditions 2.1 and 2.2 hold and
that |m(a)| < m0/s for some fixed constant m0. Let k denote the maximum number of age
intervals for which m(a) is nonzero. Let Pi = ∫

Ii
U da. Then

‖U‖2(T ) � Č‖U‖2(0), (11)

|P(T )| �
∑

i

|Pi(0)| + C̃, (12)

where Č depends on Cβ , T and k, and C̃ depends on Č, C1, ‖U‖(0), Cβ , T and k.
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Proof. Let v = U in (9) to obtain
1

2

d

dt
‖U‖2

i = b(U)

∫
Ii (t)

m(a)U da −
∫

Ii (t)

µU 2 da (13)

� b(U)‖m(a)‖i‖U‖i . (14)

The birth term satisfies

|b(U)| =
∣∣∣∣
∫ ∞

−∞
β(a, P )U(a, t) da

∣∣∣∣
� ‖β(·, P )‖‖U‖
� Cβ‖U‖. (15)

Then
1

2

d

dt
‖U‖2

i � Cβ‖U‖‖m‖i‖U‖i . (16)

Recall that |m(a)| < m0/s for some fixed constant m0. Then

‖m‖i =
(∫

Ii (t)

m2(a) da

) 1
2

� m0

√
�ai

s
� m0

√
�a

s
(17)

when Ii(t) ∩ [−s, s] �= ∅, and ‖m‖i = 0 otherwise. Moreover, m(a) is nonzero on at most
an interval of length 2s. Apply lemma 4.1, given below, with w(t) = 0 and hi(t) = ‖U‖i (t),
to get (11).

Let µ̄i and Ūi be the average of µ and U , respectively, on Ii . Then
d

dt
Pi = b(U)

∫
Ii

m(a) da − µ̄iPi +
∫

Ii

(µ − µ̄i)(U − Ūi) da. (18)

Multiply by Pi and drop the −µ̄iP
2
i term to get

|Pi | d

dt
|Pi | � |Pi |

(
b(U)

∫
Ii

|m(a)| da +

∣∣∣∣
∫

Ii

(µ − µ̄i)(U − Ūi) da

∣∣∣∣
)

. (19)

Since Ūi is theL2-projection into constant functions ofU on Ii , we have that‖U−Ūi‖i � ‖U‖i .
Using ‖µ − µ̄i‖i � ‖∂aµ(·, P )‖i�ai we get∫

Ii

(µ − µ̄i)(U − Ūi) da � ‖U − Ūi‖i‖µ − µ̄i‖i

� ‖∂aµ(·, P )‖i‖U‖i�ai. (20)

Then
d

dt
|Pi | �

(
b(U)

∫
Ii

|m(a)| da + ‖∂aµ(·, P )‖i‖U‖i�ai

)
. (21)

Integrating gives

|Pi(T )| � |Pi(0)| + Cβ‖U‖(T )

∫
Ii

|m(a)| da +
∫ T

0
‖∂aµ(·, P )‖i‖U‖i�ai dt. (22)

Using the arithmetic–geometric mean inequality on the last term and summing gives

|P(T )| �
∑

i

|Pi(T )| (23)

�
(∑

i

|Pi(0)|
)

+ Cβ‖U‖(T )
2m0(s + �a)

s
(24)

+
�a

2

(
‖∂aµ(·, P )‖2T +

∫ T

0
‖U‖2 dt

)
. (25)

Applying (11) to bound ‖U‖ and using ‖∂aµ(·, P )‖ � C1 gives (12). �
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We denote by A(t) the L2-projection into A(t). We choose X(t) ∈ A(t) such that
X(t) = A(t)(ũ(·, t)) and set Y (t) = ∫ ∞

−∞ X(t) da. We set

ϑ = U − X, η = ũ − X, 
 = P − Y, σ = p − Y.

Note that σ is identically zero because A(t) preserves the integral. For definiteness, we will
take U(a, 0) = X(a, 0); this gives that ϑ(a, 0) = 0 and 
(0) = 0.

Theorem 4.2 (Convergence of mollified birth method). Assume conditions 2.1–2.4 hold,
that |m(a)| < m0/s for some fixed constant m0, and that ‖∂pb(·, ρ)‖, ‖β(·, ρ)‖Hq+1(R), and
‖U(·, t)‖ are bounded. Let k denote the maximum number of age intervals for which m(a) is
nonzero. Then

|
 |2 +
∑

i

‖ϑ‖2
i � Ĉ

∫ T

0

(‖η‖H−q−1(R)(t) + sλ+1
)2

dt, (26)

where Ĉ depends onC0, C1, Kµ, ‖ũ(·, t)‖L∞(R), ‖u(·, t)‖L∞(R), k, ‖∂pb(·, ρ)‖, ‖β(·, ρ)‖Hq+1(R),
and ‖U(·, t)‖.

Remark. If there are at most k intervals Ii(t) that intersect [−s, s], q = 1 (discontinuous
piecewise linears in a), and m(a) is chosen so that λ = 2, we get a uniform bound on ‖ϑ‖ of
C(k)(�a)3, i.e. superconvergence with one extra power of �a. Moreover, U − ũ = O((�a)3)

at the two Gauss points in each interval.

Proof. We take the inner product of (6) with v ∈ A(t) and integrate over age to get∫
Ii (t)

(Dũ)v da =
∫

Ii (t)

mb(u)v − µ(a, p)uv + rv da, (27)

for a ∈ R, t � 0.
We subtract (27) from (9), and let v = ϑ , to get∫

Ii (t)

(D(ϑ − η))ϑ da

=
∫

Ii (t)

(b(U) − b(u))m(a) ϑ − (µ(a, P )U − µ(a, p)ũ)ϑ + rϑ da. (28)

By orthogonality,∫
Ii (t)

η ϑ da = 0. (29)

For t �∈ J , let ε > 0 be such that (t − ε, t + ε) ∩ J = ∅. For a given v ∈ A(t) extend it to
(t −ε, t +ε), by taking it to be constant along characteristics. By (29) we have, for 0 < �t < ε,

0 = 1

�t

∫
Ii (t)

η(a, t + �t)v(a, t + �t) − η(a, t)v(a, t) da

= 1

�t

∫
Ii (t)

(
η(a + �t, t + �t) − η(a, t)

)
v(a, t) da. (30)

Taking limits we see that for v ∈ A(t),∫
Ii (t)

(
Dη(a, t)

)
v(a, t) da = 0. (31)
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For the death term we have∫
Ii (t)

(µ(a, P )U − µ(a, p)ũ)ϑ da

=
∫

Ii (t)

(µ(a, P ) − µ(a, p))ũϑ da +
∫

Ii (t)

µ(a, P )(ϑ − η)ϑ da

� Kµ|P − p|‖ũ‖i‖ϑ‖i + C1‖ϑ‖2
i −

∫
Ii (t)

µ(a, P )η ϑ da. (32)

Let µ̄ denote the average of µ in age over each Ii(t). Then∫
Ii (t)

µ(a, P )η ϑ da =
∫

Ii (t)

(µ(a, P ) − µ̄(P ))η ϑ da

� ‖µ(a, P ) − µ̄(P )‖L∞(R)‖η‖i‖ϑ‖i

� C1

2
�a‖η‖i‖ϑ‖i . (33)

Recall that

‖m‖i =
(∫

Ii (t)

m2(a) da

) 1
2

� m0

√
�ai

s
� m0

√
�a

s
(34)

when Ii(t) ∩ [−s, s] �= ∅, and ‖m‖i = 0 otherwise, and that m(a) is nonzero on at most an
interval of length 2s. For each age interval in our partition we have∫

Ii (t)

(b(U) − b(u)) ϑ m(a) da � |b(U) − b(u)|‖m(a)‖i‖ϑ‖i , (35)

We now need some bound on |b(U) − b(u)|. Note that

|b(ũ) − b(u)| =
∣∣∣∣
∫

R

β(a, p)(ũ − u)(a, t) da

∣∣∣∣
=

∣∣∣∣
∫

R

(β̃(a, p) − β(a, p))u(a, t) da

∣∣∣∣ , (36)

where β̃ is the convolution in age of β with m̌(a) = m(−a). Because β is smooth in a this
term is bounded by Csλ+1p(t). Next

|b(U) − b(ũ)| =
∣∣∣∣
∫

R

β(a, P )U(a, t) − β(a, p)ũ(a, t) da

∣∣∣∣
=

∣∣∣∣
∫

R

(β(a, P ) − β(a, p))U(a, t) − β(a, p)(U − ũ)(a, t) da

∣∣∣∣
� C(|P − p| + ‖ϑ − η‖H−q−1(R))

� C(|
 | + ‖ϑ‖H−q−1(R) + ‖η‖H−q−1(R)). (37)

Here we used a bound on ‖∂pb(·, ρ)‖ and a bound on ‖β(·, ρ)‖Hq+1(R), in addition to a bound
on ‖U(·, t)‖. We summarize these two results as

|b(U) − b(u)| � C(|
 | + ‖ϑ‖H−q−1(R) + ‖η‖H−q−1(R) + sλ+1). (38)

From (28), (31), (32), (33) and (38), we get

d

dt
‖ϑ‖2

i � Kµ|P − p|‖ũ‖i‖ϑ‖i + C1‖ϑ‖2
i +

C1

2
�a‖η‖i‖ϑ‖i + ‖r‖i‖ϑ‖i

+C(|
 | + ‖ϑ‖H−q−1(R) + ‖η‖H−q−1(R) + sλ+1)‖m(a)‖i‖ϑ‖i . (39)



Mollified birth methods 1991

We now need a bound on |p − P |. To bound the error in the total population density, we
integrate (1a) over a to obtain

∂tp = b(u) −
∫ ∞

−∞
µ(a, p)u da. (40)

For the approximate total population density we have

∂tP = b(U) −
∫ ∞

−∞
µ(a, P )U da. (41)

We subtract (40) from (41) and multiply by v = 
 to get
1

2
∂t |
 |2 = (b(U) − b(u))
 −

∫ ∞

−∞
µ(a, p)u − µ(a, P )U da

� |b(U) − b(u)||
 | +

∣∣∣∣
∫ ∞

−∞
(µ(a, P ) − µ(a, p))u + µ(a, P )(u − U) da

∣∣∣∣
� C(|
 | + ‖ϑ‖H−q−1(R) + ‖η‖H−q−1(R) + sλ+1)|
 |

+ (C1 + Kµ‖u‖L∞(R))|
 |. (42)

To deal with this complex set of evolution inequalities we need a variation on Gronwall’s
inequality, lemma 4.1, given below. To apply the lemma to our situation let h0(t) = |
(t)| and
f0(t) = g0(t) = 1/2. For i < 0 let hi(t) = ‖ϑ‖i , fi(t) = Kµ|P − p|‖ũ‖i + (C1/2)�a‖η‖i +
‖r‖i , and gi(t) = ‖m‖i . The function w(t) is just ‖η‖H−q−1(R)(t) + sλ+1. Recall ϑ(a, 0) = 0
and 
(0) = 0. Then (39) and (42) give the convergence result

|
 |2 +
∑

i

‖ϑ‖2
i � Ĉ

∫ T

0

(‖η‖H−q−1(R)(t) + sλ+1
)2

dt. (43)

�

Lemma 4.1 (A Gronwall-like Inequality). Let T be positive and suppose that q and gi and
hi , for i ∈ I, are nonnegative continuous functions on [0, T ], where I is some finite set.
Assume that the his are differentiable, that q2(t) = ∑

i f
2
i (t), and that there is a C0 such that∫ T

0 g2
i (t) dt � C0 and

∫ T

0 q2(t) dt � C0. In addition we assume that at most k of the gi’s are
nonzero at any value of t . If on [0, T ] we have

d

dt
h2

i (t) � C1


w2(t) +

∑
j

h2
j (t)




1
2

(gi(t) + fi(t)) hi(t) (44)

then there is a C2 = C2(C0, C1, T , k) such that for t ∈ [0, T ]∑
i

h2
i (t) � C2

(∑
i

h2
i (0) +

∫ T

0
w2(t) dt

)
.

Proof. Without loss of generality we can assume that C1 = 1 since we can replace gi and q

by C1gi and C1q, and this replaces C0 by C0C
2
1 . Let Gi(t) = ∫ t

0 g2
i (τ ) + q2(τ ) dτ . From (44)

we get that

d

dt
(h2

i (t) exp(−Gi(t))) = exp(−Gi(t))

((
dhi

dt

)2

− g2
i h

2
i − q2h2

i

)

� exp(−Gi(t))





w2(t) +

∑
j

h2
j (t)




1
2

(gi + fi) hi − g2
i hi − q2h2

i


 . (45)
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Let ωi = exp(−Gi/2)hi and note that exp((Gj − Gi)/2) � exp(Gj/2) � exp(C0). Then

d

dt
ω2

i � exp(C0)


w2 +

∑
j

ω2
j




1
2

(gi + fi)ωi − g2
i ω

2
i − q2ω2

i . (46)

Hence

d

dt

∑
i

ω2
i � exp(C0)


w2 +

∑
j

ω2
j




1
2 ∑

i

(gi + fi)ωi −
∑

i

(
g2

i ω
2
i + q2ω2

i

)
. (47)

Note (∑
i

1 · (giωi)

)2

�




(∑
i

1

) 1
2
(∑

i

giωi

) 1
2




2

� k
∑

i

(giωi)
2. (48)

The sum is only taken on the i values such that gi �= 0. We make the bound

exp(C0))


w2 +

∑
j

ω2
j




1
2 ∑

i

giωi

� k

4
exp(2C0)


w2 +

∑
j

ω2
j


 +

1

k

(∑
i

giωi

)2

� k

4
exp(2C0)


w2 +

∑
j

ω2
j


 +

∑
i

g2
i ω

2
i . (49)

Thus

d

dt

∑
i

ω2
i � k

4
exp(2C0)

(
w2 +

∑
i

ω2
i

)

+ exp(C0)

(
w2 +

∑
i

ω2
i

) 1
2 ∑

i

giωi −
∑

i

q2ω2
i

� k

4
exp(2C0)

(
w2 +

∑
i

ω2
i

)

+ exp(C0)

(
w2 +

∑
i

ω2
i

) 1
2
(∑

i

g2
i

) 1
2 (

ω2
i

) 1
2 −

∑
i

q2ω2
i

�
(

k

4
+

1

4

)
exp(2C0)

(
w2 +

∑
i

ω2
i

)
+ q2

∑
i

ω2
i −

∑
i

q2ω2
i

� k + 1

4
exp(2C0)

(
w2 +

∑
i

ω2
i

)
(50)

Gronwall’s inequality then gives that
∑

i (ω
2
i ) is bounded on [0, T ] by a multiple of the

sum of its initial value and the integral of w2. Another factor of exp(2C0) allows us to remove
the exponentials from the bound, and that proves the claim. �
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5. Computational example

We consider system (1a)–(1c) with birth term

b(u(·, t)) =
∫ ∞

0
β0 a u da, (51)

so that fecundity increases linearly in age with slope β0. For the death modulus, we use

µ(a, p) = µ(a) = 10e10(a−0.8)

e10(a−0.8) + e−10(a−0.8)
+

1

2
. (52)

This represents a situation where mortality remains low until around a certain age, at which
point it increases dramatically.

For the initial condition, we use a population of older organisms,

u0(a) = 128|a − 0.5|3 − 48(a − 0.5)2 + 1, (53)

if |a − 0.5| < 0.25, and u0(a) = 0, otherwise.
Our numerical treatment is as follows. For the birth mollifier, we use a piecewise C1 cubic

with compact support on [−s, s],

m(a) =




1

s

(
2

( |a|
s

)3

− 3

( |a|
s

)2

+ 1

)
, −s � a � s,

0, otherwise.

(54)

This satisfies equation (3) with λ = 1, giving us O(s2) error according to equation (4). We
build our natural-age-grid finite element space in age, equation (8), by using a partition, J ,
of (−∞, ãmax] with intervals of equal length �a, and use piecewise constants over J as the
approximation space (q = 0). In the computations using mollified birth presented here, we
set s = �a. Thus, the errors due to discretizing the age distributions and mollifying birth are
both O((�a)2). We take �a = 0.0375

We take the temporal domain to be [0, 3]. We find that truncating the age domain for sharp
birth to [0, 2], and to [−0.0375, 2] for mollified birth, is sufficient for an accurate solution.

We consider two cases, β0 = 30 and β0 = 40, that differ in the benefit of using mollified
birth. The two cases are shown in figures 1 and 2. In the first case, the exponential growth
of the total population p, and consequently the number of newborns, is sufficiently small so
that mollification provides no benefit, and even some loss of efficiency. In the second case,
the exponential growth is sufficiently large to induce sufficiently rapid change in the number
of newborns so that mollification is necessary to prevent the the time step from diving down
to the minimum allowed time step.

These are due to rapid changes in the birth terms in the first two age intervals when a
new age interval is introduced. Moreover, the density increase or decrease triggering the error
controls is not well-mitigated by cutting the time steps because much of the density increase
or decrease, (newborn production rate ×�t)/�t , does not change significantly with changes
in the time step. Under mollification, the new, small, first age interval only receives a small
portion of all newborns, which solves the problem.

A kludge is to turn off error control in the first two age intervals. This is inadvisable in
situations where rapid changes in newborn production may require some adaptivity to get the
correct timing of rapid changes in the population as a whole. Mollification is important to
ensure we are avoiding large errors at critical junctions in a system’s evolution—rather than
hoping our minimum allowed time step will do the job.
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Figure 1. Time steps taken with sharp and mollified birth for β0 = 30. The bottom figure shows
the base-10 logarithm of the associated total population p.
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Figure 2. Time steps taken with sharp and mollified birth for β0 = 40. The bottom figure shows
the base-10 logarithm of the associated total population p. The time-step dives seen in the top
figure descend to an imposed minimum time step of 10−6.
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